King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics MATH430 - Introduction to Complex Variables Exam II – Term 132 (2013–2014)

Exercise1(5 points)

By evaluating $\oint_C e^z dz$ around the unit circle |z| = 1, show that $\int_0^{2\pi} e^{\cos\theta} \cos(\theta + \sin\theta) d\theta = \int_0^{2\pi} e^{\cos\theta} \sin(\theta + \sin\theta) d\theta = 0.$ Exercise 2 (10 points) Let $f(z) = \frac{z^2 + 2z - 5}{(z^2 + 4)(z^2 + 2z + 2)}$.

- (a) If C_R is the circle |z| = R, show that $\lim_{R \to +\infty} \oint_{C_R} f(z) dz = 0$.
- (b) Use the result (a) to deduce that if C is the circle |z-2| = 5, then $\oint_C f(z) dz = 0$.
- (c) Compute $\oint_{\mathcal{C}} f(z)$, where \mathcal{C} is the circle |z + 1| = 2 traversed once the positive sens.

Exercise 3(7 points) Let C_r be the circle |z| = r traversed once the positive sens. Find for r > 0 and $r \neq 1$, the integral

$$\oint_{\mathcal{C}_r} \frac{\overline{z}}{(1-z)^2} dz.$$

 $\ensuremath{\textit{Exercise4}}(\ensuremath{\texttt{6}}\xspace$ points) Show that

$$\int_{-1}^{1} z^{i} dz = \frac{1 + e^{-\pi}}{2} (1 - i),$$

where the integrand denotes the principal branch

$$z^i = \exp(i \operatorname{Log} z) \quad (|z| > 0, -\pi < \operatorname{Arg} z < \pi)$$

of z^i and where the path of integration is any contour from z = -1 to z = 1 that, except for its end points, lies above the real axis.

Exercise5(10 points)

- (a) Let *f* be an entire and suppose that $\Re f(z) \leq M$ for all *z*. Prove that *f* must be a constant function. [HINT: Consider the function e^{f} .]
- (b) Suppose that f is entire and that $|f(z)| \le |z|^3$ for all sufficiently large values of |z|. Prove that f must be a polynomial of degree at most 3.

Exercise6(5 points)

Let f_n be a sequence of functions analytic in a simply connected domain D and converging uniformly to f in D. Prove that f is analytic in D.

Exercise7(7 points)

Find the Laurent series for the function $\frac{z^2}{(z-1)(z+2)}$ in each of the following domains (a) |z| < 1 (b) 1 < |z| < 2 (c) |z| > 2.