King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics MATH430 - Introduction to Complex Variables Exam I – Term 132 (2013–2014)

Exercise1(5 points)

Solve the equation $(z+1)^5 = z^5$.

Exercise 2 (10 points)

Find *all* the values of

- (a) $\left(\frac{2i}{1+i}\right)^{1/6}$,
- (b) $|(-i)^{-i}|$.

Exercise3(8 points)

Find the image of the horizontal line y = c, c > 0 under the mapping $w = \frac{1}{z}$.

$Exercise 4 ({\tt 12 \ points})$

- (a) Show that $\cos^{-1}(z) = -i \log (z + i(1 z^2)^{1/2})$.
- (b) Solve cos(z) = 2.
- (c) Find the principal value of $cos^{-1}(x)$, $x \in [-1,1]$.
- (d) Find the branch of $cos^{-1}(x)$ using the principal log and log_0 for the root, where $x \in [-1,1]$.

Exercise 5 (7 points) Find an analytic function f(z) such that

$$\Re f'(z) = 3x^2 - 4y - 3y^2$$
 and $f(1+i) = 0$.

Exercise 6 (8 points)

1. If u and v are harmonic in a region Ω , prove that

$$F = \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$$

is analytic in Ω .

2. Assume that $u = \Re f$ and $v = \Re g$, where f and g are analytic functions in Ω . Find F in terms of f and g.