KFUPM - Department of Mathematics and Statistics MATH 345, Term 132 Final Exam (Out of 100), Duration: 180 minutes

NAME: ID:

Solve the following Exercises.

Exercise 1 (15 points 5-5-5): Let G be a cyclic group.

(1) If 6 divides |G|, How many elements of order 6 does G have? Justify.

(2) If 8 divides |G|, How many elements of order 8 does G have? Justify.

(3) If a is an element of G with |a| = 8. Find all other elements of order 8 of G. Justify.

Exercise 2 (10 points 5-5): Let G be a finite abelian group with |G| = pq where p and q are distinct positive prime integers. Set $H_1 = \{x \in G | x^q = e\}$ and $H_2 = \{x \in G | x^p = e\}.$ (1) Prove that H_1 and H_2 are incomparable cyclic groups and find their orders. (2) Prove that G is the internal direct product of H_1 and H_2 .

Exercise 3 (15 points 5-5-5): Let A and B be commutative rings, Z(A) and Z(B)be the sets of all zero-divisors of A and B respectively, and $\phi\,:\,A\,\longrightarrow\,B$ a ring isomorphism.

(1) Prove that $\phi(Z(A)) = Z(B)$. (2) Find $Z(\mathbb{Z}_4)$ and $Z(\mathbb{Z}_2 \bigoplus \mathbb{Z}_2)$. (3) Use (1) to prove that \mathbb{Z}_4 is not isomorphic to $\mathbb{Z}_2 \bigoplus \mathbb{Z}_2$. (No other justification is accepted).

Exercise 4 (20 points, 5-5-5-5): Let D be an integral domain and K a field.

(1) Prove that K[X] is a *PID* (Principal Ideal Domain).

(2) Prove that D[X] is a *PID* if and only if D is a field.

(3) Let $I = \{f(X) \in K[X] | f(a) = 0 \text{ for all } a \in K\}$. Prove that I is an ideal of K[X].

(4) Assume that K is finite. Find a monic polynomial $g \in K[X]$ such that I = (g).

4

- **Exercise 5** (20 points, 5-5-5): Let $f = a + bX + X^2$ be a polynomial in $\mathbb{Z}[X]$. (1) Prove that f is reducible over \mathbb{Z} if and only if f(x) has a root in \mathbb{Z} . (2) Let p be a positive prime integer and set $g = a + bX + pX^2$ where p do not divide ab. Prove that g is reducible over \mathbb{Z} only if g has a root in \mathbb{Z} . (3) Application: Use (2) to prove that $2X^2 + X + 1$ is irreducible over \mathbb{Z} .

- (4) Is the Mod p Test applicable? Justify.

- **Exercise 6** (20 points, 5-5-5-5): Let $D = \mathbb{Z}[\sqrt{-5}]$. (1) Prove that $1 + \sqrt{-5}$ and $1 \sqrt{-5}$ are irreducible but not prime.
- (2) Prove that 2 and 3 are irreducible in D.
- (3) Find two factorizations of 6 in D.
- (4) Is D = UFD (Unique Factorization Domain)? Justify.