KFUPM - Department of Mathematics and Statistics MATH 345, Term 132Exam II (Out of 80), Duration: 120 minutes

NAME: ID:

Solve the following Exercises.

Exercise 1 (10 points 5-5):

Let p be a (fixed) nonzero real number and (\mathbb{R}^*,\times) be the multiplicative group of all nonzero real numbers under the usual multiplication. We define a new operation (1) Prove that $(\mathbb{R}^*, \bigotimes)$ is a group. (2) Prove that $(\mathbb{R}^*, \bigotimes)$ is isomorphic to $(\mathbb{R}^*, \bigotimes)$.

Exercise 2 (15 points 5-5-5):

Let $\mathbb{Z}[\sqrt{2}]$ be the additive group of all elements of the form $\{x + y\sqrt{2}|x, y \text{ integers }\}$. For a fixed integer a, we define the following two maps φ_a and $\psi_a : \mathbb{Z}[\sqrt{2}] \longrightarrow \mathbb{Z}[\sqrt{2}]$ by $\varphi_a(x + y\sqrt{2}) = x + ay + y\sqrt{2}$ and $\psi_a(x + y\sqrt{2}) = x + ay - y\sqrt{2}$. (1) Prove that φ_a and ψ_a are automorphisms of the additive group $(\mathbb{Z}[\sqrt{2}], +)$ with

 $\varphi(1)=\psi(1)=1.$

(2) Use (1) to find all automorphisms ϕ of $\mathbb{Z}[\sqrt{2}]$ satisfying $\phi(1) = 1$.

(3) Find two infinite groups $\hat{H} \subsetneqq G$ such that Aut(H) is finite and Aut(G) is infinite.

Exercise 3 (15 points 5-5-5): Let G and G' be groups, H a normal subgroup of Gand $\phi: G \longrightarrow G'$ a group homomorphism.

(1) Prove that if ϕ is onto, then $\phi(H)$ is a normal subgroup of G'.

(2) Let $G = \mathbb{R}^*$ be the multiplicative group of nonzero real numbers, $H = \mathbb{Q}^*$ its normal subgroup of nonzero rational numbers, $G' = GL_2(\mathbb{R}) = \{ \text{ all } 2 \times 2 \text{ matrices} \\ A \text{ with } det A \neq 0 \}$ and $\phi: G \longrightarrow G'$ defined by $\phi(a) = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$. Prove that ϕ is a group homomorphism which is not onto.

(3) Prove that $\phi(\mathbb{Q}^*)$ is not normal in G'. (Hint use the matrix $\begin{pmatrix} 1 & 0 \\ 1 & \sqrt{2} \end{pmatrix}$ and a=3)

Exercise 4 (15 points 5-5-5): Let m and n be two positive integers that are relatively prime and $\phi : \mathbb{Z}/m\mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z} \bigoplus \mathbb{Z}/n\mathbb{Z}$ defined by $\phi(\overline{x}[mn]) = (\overline{x}[m], \overline{x}[n])$. (1) Prove that ϕ is an isomorphism.

(2) Let G_1, G_2 and H be three groups (denoted multiplicatively). Prove that if G_1 is isomorphic to H, then $G_1 \bigoplus G_2$ is isomorphic to $H \bigoplus G_2$.

(3) Use (1) and (2) to find at least an isomorphism between $\mathbb{Z}/6\mathbb{Z} \bigoplus \mathbb{Z}/5\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \bigoplus \mathbb{Z}/3\mathbb{Z} \bigoplus \mathbb{Z}/5\mathbb{Z}$.

4

Exercise 5 (10 points, 5-5):

- (1) Find all subgroups of index 2 of the multiplicative group \mathbb{R}^* .
- (2) Prove that the additive group \mathbb{Q} has no subgroup of finite index.

Exercise 6 (15 points, 4-7-4):

Let $G = \mathcal{M}_n(\mathbb{R})$ be the additive group of all $n \times n$ matrices, H_1 the set of all $n \times n$ symmetric matrices (i. e. $A = A^T$) and H_2 be the set of all $n \times n$ skew symmetric matrices (i. e. $A = -A^T$). (1) Prove that H_1 and H_2 are subgroups of G.

- (2) Prove that G is the internal direct Product of H_1 and H_2 .
- (3) Are H_1 and H_2 isomorphic?