KFUPM - Department of Mathematics and Statistics MATH 345, Term 132 Exam I (Out of 80), Duration: 120 minutes

NAME: ID:

Solve the following Exercises.

Exercise 1 (10 points: 5-5): Let G be the multiplicative group of all 2×2 matrices with determinant equal to 1, and let $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. 1-Find the centralizer $\mathcal{C}(A)$ of A. 2-Prove that for any $B, C \in \mathcal{C}(A), BC = CB$. **Exercise 2** (10 points 5-5): Let G be an abelian group containing three distinct elements a, b, and c of order 2 and such that $ab \neq c$.

(1) Prove that G contains a subgroup H of order 8.

(2) Find an abelian group with three distinct elements of order 2 which has no subgroup of order 8.

Exercise 3 (20 points 5-5-5-5): (1) Let G be a multiplicative monoid (equivalently G has an operation which is associative and which has an identity element). If for every $a \in G$, the set $\{a^n | n \ge 0\}$ is finite, is G a group? Justify.

(2) Let G be a group, {H_n}_{n≥1} be a chain of subgroups of G (i.e. H_n ⊆ H_{n+1} for each n), and H = ⋃_{n≥1} H_n. Prove that H is a subgroup of G.
(3) Let H and H' be subgroups of a group G. Prove that H ∪ H' is a subgroup of

(3) Let H and H' be subgroups of a group G. Prove that $H \cup H'$ is a subgroup of G if and only if H and H' are comparable for the inclusion, (equivalently $H \subseteq H'$ or $H' \subseteq H$).

4-Give an example of a group G with two subgroups H and H' such that $H \cup H'$ is not a subgroup of G. Justify.

Exercise 4 (15 points 5-5-5): Let G be an abelian finite group such that |G| = 10. (1) Is G a cyclic group? Justify.

(2) If G is an abelian group with G = pq where $p \neq q$ are prime integers, is G a cyclic group?

(3) If $|G| = p^2$ for some positive prime integer p, does G contain an element of order p^2 ? Is G cyclic? Justify.

Exercise 5 (10 points):

- Let G be an abelian finite group which has exactly one nontrivial proper subgroup.
- (1) Prove that G is cyclic.
 (2) Prove that |G| = p² for some positive prime integer p.

Exercise 6 (15 points 5-5-5):

(1) Let G be a group of permutations of a set A and let $a \in A$. Set $stab(a) = \{\sigma \in G | \sigma(a) = a\}$. Prove that stab(a) is a subgroup of G.

- In the symmetric group S_4 , find: (2) A cyclic group of order 4.
- (2) A cyclic group of order 4.(3) A non-cyclic group of order 4.
- 6