King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

MATH 302 - Exam I (Term 132)

March 01, 2014

Duration: 120 Minutes

Name	:	SOLUTION KEY	ID #	:
Section #	:		Serial #	:

- Provide all **necessary steps** with **clear writing**.
- Mobiles and calculators are NOT allowed in the exam.

Question #	Marks	Maximum Marks
(1)		23
(2)		11
(3)		16
(4)		10
(5)		17
(6)		23
Total		100

ΕΧΑΜ Ι

(1) Let $\mathbf{S} = \{ \langle a, b, c, d \rangle \mid a + b + c = d \text{ and } a, b, c, d \in \mathbb{R} \}.$ (a) Show that \mathbf{S} is a *subspace* of \mathbb{R}^4 .

<u>Solution:</u> S is nonempty since the vector $\mathbf{0} = \langle 0, 0, 0, 0 \rangle$ is in the set.

- (i) Let $\mathbf{v_1} = \langle a_1, b_1, c_1, d_1 \rangle$, $\mathbf{v_2} = \langle a_2, b_2, c_2, d_2 \rangle$ be in **S**. Then
 - $a_1 + b_1 + c_1 = d_1$ and $a_2 + b_2 + c_2 = d_2$.

We have

$$\mathbf{v_1} + \mathbf{v_2} = \langle a_1 + a_2, b_1 + b_2, c_1 + c_2, d_1 + d_2 \rangle$$
 and

 $(a_1 + a_2) + (b_1 + b_2) + (c_1 + c_2) = (a_1 + b_1 + c_1) + (a_2 + b_2 + c_2) = d_1 + d_2.$

So, $\mathbf{v_1} + \mathbf{v_2}$ is also in **S**.

(ii) Let *k* be a scalar. Then $k\mathbf{v}_1 = \langle ka_1, kb_1, kc_1, kd_1 \rangle$.

We have $ka_1 + kb_1 + kc_1 = k(a_1 + b_1 + c_1) = kd_1$. So, kv_1 is also in **S**.

From (i) and (ii) we conclude that the set **S** is a subspace of \mathbb{R}^4 .

(b) Find a *basis* and the *dimension* of S.

Solution: Let $\mathbf{v} = \langle a, b, c, d \rangle$ be in S. Since a + b + c = d, we have

$$\mathbf{v} = \langle a, b, c, d \rangle = \langle a, b, c, a + b + c \rangle = \langle a, 0, 0, a \rangle + \langle 0, b, 0, b \rangle + \langle 0, 0, c, c \rangle$$
$$= a \langle 1, 0, 0, 1 \rangle + b \langle 0, 1, 0, 1 \rangle + c \langle 0, 0, 1, 1 \rangle.$$

So, the set **B** = {(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)} spans **S**. Since matrix

$$\boldsymbol{A} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

has rank 3, the set **B** is linearly independent. Thus, **B** is a basis for **S**. The dimension of **S** is 3 = the number of vectors in the basis **B**.

(c) Express the vector $\mathbf{v} = \langle 4, 1, -2, 3 \rangle$ as a linear combination of vectors in the basis found in (b).

Solution: $\mathbf{v} = \langle 4, 1, -2, 3 \rangle = 4 \langle 1, 0, 0, 1 \rangle + \langle 0, 1, 0, 1 \rangle - 2 \langle 0, 0, 1, 1 \rangle.$

$$x_1 + x_2 + x_3 = 1$$

$$x_1 + x_2 - x_3 = 1$$

$$x_1 - x_2 - x_3 = 1.$$

Solution:

Applying Gaussian Elimination to the augmented matrix of the system gives

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 1 & 1 & -1 & | & 1 \\ 1 & -1 & -1 & | & 1 \end{pmatrix} Row operation \implies \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}$$

We have
$$x_1 + x_2 + x_3 = 1$$
$$x_1 + x_2 = 0$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

 $x_3 = 0.$

- (3) Determine whether the given set of vectors is *linearly independent* or *linearly* dependent.
 - (a) $\mathbf{u_1} = \langle 1, -1, 3, -1, 0 \rangle$, $\mathbf{u_2} = \langle 2, -1, -3, 1, 4 \rangle$, $\mathbf{u_3} = \langle -1, 0, 6, -2, -4 \rangle$.

<u>Solution</u>: The set of vectors is *linearly dependent* since $\mathbf{u}_1 - \mathbf{u}_2 - \mathbf{u}_3 = \mathbf{0}$.

(b) $\mathbf{u_1} = \langle 1, -1, 3, -1 \rangle$, $\mathbf{u_2} = \langle 3, -3, 5, -4 \rangle$, $\mathbf{u_3} = \langle -2, 2, 0, 7 \rangle$.

Solution: Consider the matrix

$$A = \begin{pmatrix} 1 & -1 & 3 & -1 \\ 3 & -3 & 5 & -4 \\ -2 & 2 & 0 & 7 \end{pmatrix} \text{ Row operations } \Longrightarrow \begin{pmatrix} 1 & -1 & 3 & -1 \\ 0 & 0 & 1 & -1/4 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Since rank(A) = 3 and the number of vectors is also 3, the given set is linearly independent.

- (4) Let **A** be a nonzero 5×7 matrix.
 - (a) What is the *maximum rank* that A can have?

Answer:

The *maximum* possible rank of **A** is the number of rows in **A**, which is **5**.

(b) If rank(A|B) = 4, then for what value(s) of rank(A) is the system AX = B,
B ≠ 0, inconsistent? Consistent?

Answer:

The system is *inconsistent* if rank(**A**) < **4**.

The system is *consistent* if rank(A) = rank(A|B) = 4.

(c) If rank(A) = 3, then how many *parameters* does the solution of the systemAX = 0 have?

Answer:

The system has n = 7 unknowns and the rank of A is r = 3. Thus, the solution of the system has n - r = 4 parameters.

<u>Solution</u>: To find **A** we compute $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$:

$$\begin{pmatrix} 2 & -1 & 2 & | & 1 & 0 & 0 \\ 1 & -1 & 2 & | & 0 & 1 & 0 \\ -3 & 2 & -3 & | & 0 & 0 & 1 \end{pmatrix} \quad R_{12} \Rightarrow \begin{pmatrix} 1 & -1 & 2 & | & 0 & 1 & 0 \\ 2 & -1 & 2 & | & 1 & 0 & 0 \\ -3 & 2 & -3 & | & 0 & 0 & 1 \end{pmatrix}$$
$$-2R_1 + R_2 \Rightarrow 3R_1 + R_3 \Rightarrow \begin{pmatrix} 1 & -1 & 2 & | & 0 & 1 & 0 \\ 0 & 1 & -2 & | & 1 & -2 & 0 \\ 0 & -1 & 3 & | & 0 & 3 & 1 \end{pmatrix}$$
$$R_2 + R_3 \Rightarrow \begin{pmatrix} 1 & -1 & 2 & | & 0 & 1 & 0 \\ 0 & 1 & -2 & | & 1 & -2 & 0 \\ 0 & 0 & 1 & | & 1 & 1 & 1 \end{pmatrix}$$
$$2R_3 + R_2 \Rightarrow -2R_3 + R_1 \Rightarrow \begin{pmatrix} 1 & -1 & 0 & | & -2 & -1 & -2 \\ 0 & 1 & 0 & | & 3 & 0 & 2 \\ 0 & 0 & 1 & | & 1 & 1 & 1 \end{pmatrix}$$
$$R_1 + R_2 \Rightarrow \begin{pmatrix} 1 & 0 & 0 & | & 1 & -1 & 0 \\ 0 & 1 & 0 & | & 3 & 0 & 2 \\ 0 & 0 & 1 & | & 1 & 1 & 1 \end{pmatrix}$$
we $\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 3 & 0 & 2 \end{pmatrix}.$

We have $\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 3 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$.

(b) Solve the system AX = B, where A is the matrix found in (a),

$$\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}.$$

Solution: The solution is $\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{A}^{-1}\mathbf{B} = \begin{pmatrix} 2 & -1 & 2 \\ 1 & -1 & 2 \\ -3 & 2 & -3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} -3 \\ -5 \\ 5 \end{pmatrix}.$

- (6) Let $\mathbf{A} = \begin{pmatrix} -1 & 2 & -2 \\ 2 & -1 & 2 \\ -2 & 2 & -1 \end{pmatrix}$.
 - (a) Verify that eigenvalues of **A** are $\lambda_1 = -5$ and $\lambda_2 = \lambda_3 = 1$.

<u>Solution:</u> Characteristic equation of **A** is

$$\begin{vmatrix} -1 - \lambda & 2 & -2 \\ 2 & -1 - \lambda & 2 \\ -2 & 2 & -1 - \lambda \end{vmatrix} = (-1 - \lambda)(\lambda^2 + 2\lambda - 3) - 4(-2 - 2\lambda + 4)$$
$$= \lambda^3 + 3\lambda^2 - 4\lambda + 5 = (\lambda + 5)(\lambda - 1)^2 = 0.$$

Thus, eigenvalues of **A** are $\lambda_1 = -5$ and $\lambda_2 = \lambda_3 = 1$.

(b) Find an *orthogonal matrix* **P** that diagonalizes **A** and find the diagonal matrix $\mathbf{D} = \mathbf{P}^T \mathbf{A} \mathbf{P}$.

Solution: For $\lambda_1 = -5$, we have

$$\begin{pmatrix} 4 & 2 & -2 & | & 0 \\ 2 & 4 & 2 & | & 0 \\ -2 & 2 & 4 & | & 0 \end{pmatrix} \text{ Row operation} \Rightarrow \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

The corresponding eigenvector is $K_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.

For $\lambda_2 = \lambda_3 = 1$, we have

$$\begin{pmatrix} -2 & 2 & -2 & | & 0 \\ 2 & -2 & 2 & | & 0 \\ -2 & 2 & -2 & | & 0 \end{pmatrix} \text{ Row operation } \Rightarrow \begin{pmatrix} 1 & -1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

Two corresponding orthogonal eigenvectors are

$$K_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad K_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

The required orthogonal matrix is $P = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \\ -1/\sqrt{3} & 2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \end{pmatrix}$

The diagonal matrix is $D = \begin{pmatrix} -5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.