KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 280: FINAL EXAM, SEMESTER (132), MAY 17, 2014

Time: $08{:}00$ to $11{:}00~\mathrm{am}$

Name	:	 		
ID	:	 Section	:	

Exercise	Points
1	12
2	10
3	10
4	10
5	12
6	12
7	12
8	12
9	12
10	14
11	12
12	12
Total	140

Exercise 1 (12 pts). Let

$$A = \left(\begin{array}{rrrr} 3 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{array}\right).$$

- (1) For each real number t, find the matrix $\exp(tA)$ (exponential of tA).
- (2) Solve the following system of differential equations:

$$\begin{cases} x'(t) = 3x(t) + y(t) + z(t) \\ y'(t) = 3y(t) + z(t) \\ z'(t) = 3z(t) \end{cases}$$

with $x(0) = y(0) = z(0) = 1.$

3

Exercise 2 (10 pts). Let

$$A = \left(\begin{array}{cc} 2 & 1\\ 1 & 2 \end{array}\right).$$

find a real matrix B such that $B^2 = A$.

Exercise 3 (10 pts).

(1) Find the distance between the point $P_0 = (1, 2)$ and the line L of equation y = 3x.

(2) Find the closest point Q of L to the point $P_0 = (1, 2)$.

Exercise 4 (10 pts). Let $S = \{(x + 2y, 2x - y, 2x + 2y)^T : x, y \in \mathbb{R}\}.$

(1) Find an orthonormal basis of the vector space S (use Gram-Schmidt).

(2) Find the closest vector \mathbf{p} of S to $\mathbf{w} = (1, 0, 1)^T$.

Exercise 5 (12 pts). Find a QR-decomposition of the matrix

$$A = \left(\begin{array}{rrrr} 1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 1 & 1 \end{array}\right).$$

Exercise 6 (12 pts).

(1) Find the transition matrix from $\mathcal{B} = (1, x, x^2)$ to the basis basis $\mathcal{B}' = (1, 1 - x, 1 + x + x^2)$.

(2) Given any $p(x) = a + bx + cx^2$ in \mathbf{P}_2 , find the coordinates of p(x) with respect to the basis $\mathcal{B}' = (1, 1 - x, 1 + x + x^2)$.

Exercise 7 (12 pts). Let V be a real vector space with dimension 3 and $\mathcal{B} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ be a basis of V.

Let $T: V \longrightarrow V$ be the linear operator with matrix relatively to \mathcal{B} :

$$M = \left(\begin{array}{rrrr} -1 & 1 & -1 \\ 1 & 2 & 2 \\ 2 & 3 & 1 \end{array}\right)$$

(1) Set $\mathbf{v}_1 = \mathbf{u}_1 + \mathbf{u}_2$, $\mathbf{v}_2 = \mathbf{u}_1 - \mathbf{u}_2$ and $\mathbf{v}_3 = \mathbf{u}_1 + \mathbf{u}_3$. Show that $\mathcal{B}' = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is a basis of V.

(2) Find the matrix of T with respect to \mathcal{B}' .

Exercise 8 (12 pts). Let A be a 2×2 -matrix such that tr(A) = 12 and det(A) = 27. Find the eigenvalues of A. Is A diagonalizable?

Exercise 9 (12 pts). Let A be an $n \times n$ -matrix and $B = 6I_n - 5A + A^2$ and λ be an eigenvalue of A.

(1) Show that if \mathbf{x} is an eigenvector of A associated to λ , then \mathbf{x} is an eigenvector of B associated to an eigenvalue μ . How are λ and μ related?

(2) Show that if $\lambda = 2$, then B is a singular matrix.

Exercise 10 (14 pts). Find an orthogonal matrix that diagonalizes the symmetric matrix

$$A = \left(\begin{array}{rrr} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{array}\right).$$

(the eigenvalues of A are $\lambda_1 = \lambda_2 = 2$ and $\lambda_3 = 8$)

Exercise 11 (12 pts). Find the critical points of the function

$$f(x,y) = 4xy - x^4 - y^4$$

and classify them as relative maxima, relative minima, or saddle points.

Exercise 12 (12 pts). Express the quadratic equation

$$9x^2 - 4xy + 6y^2 - 10x - 20y = 5$$

in the matrix form

$$\mathbf{x}^T A \mathbf{x} + \mathbf{K} \mathbf{x} + f = 0,$$

where $\mathbf{x}^T A \mathbf{x}$ is the associated quadratic form and \mathbf{K} is an appropriate matrix. Identify the conic section represented by the given equation.

17
