KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 280: TEST 1, SEMESTER (132), FEBRUARY 18, 2014

Time: 18:40 to 20:00

Name :

ID : Section :

Exercise	Points
1	12
2	6
3	12
4	20
Total	50

Exercise 1. Consider the linear system whose augmented matrix is given by

(a) For what values of a and b will the system have infinitely many solutions?

(b) For what values of a and b will the system be inconsistent?

Exercise 2. Let A be an $m \times n$ matrix such that $n \ge 3$. Consider the system AX = B. Suppose that

 $B = \operatorname{col}_2(A) - \operatorname{col}_3(A) = \operatorname{col}_1(A) + 2\operatorname{col}_2(A).$

Show that the system has infinitely many solutions.

Exercise 3. Let A be an $n \times n$ -matrix such that $A^2 = A$. Consider the matrix $M = A + 2I_n$.

(a) Show that $M^2 - 5M + 6I_n = \mathbf{O}$.

(b) Deduce from (a) that M is nonsingular and find M^{-1} (as a function of M).

Exercise 4. Let A be the matrix given by

$$\left(\begin{array}{rrrrr}
1 & 0 & 1 \\
3 & 3 & 4 \\
2 & 2 & 3
\end{array}\right)$$

(a) Find the inverse of A by reducing the augmented matrix $[A \dot{:} I_3]$

(b) Express A as a product of elementary matrices.

(c) Solve the system

$$\begin{cases} x + z = 2\\ 3x + 3y + 4z = 1\\ 2x + 2y + 3z = 1 \end{cases}$$

(d) Find an LU-factorization of A.