King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math260 (Introduction to Differential Equations and Linear Algebra)

Exam II (Term 132)

Wednesday, April 16, 2014	Time Allowed: 2 hours
---------------------------	-----------------------

Name:	ID Number	
Section Number:	Serial Number:	
Class Time:	Instructor's Name:	

Instruction:

- 1. Calculators and Mobiles are not allowed.
- 2. Write neatly and legibly. You may lose points for messy work.
- 3. Show all your work. No points for answers without justification.
- 4. Make sure that you have 6 pages of problems (Total of 9 problems)

Question #	Points	Max. Points
1		10
2		10
3		6
4		16
5		10
6		15
7		8
8		10
9		15
Total		100

$$x_{1} + 6x_{2} + 2x_{3} - 5x_{4} - 2x_{5} = -4$$

$$2x_{3} - 8x_{4} - x_{5} = 3$$

$$2x_{5} = 14$$

by transforming its augmented matrix into reduced echelon form.

Q.2. Let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- a) Find a 2×2 matrix B such that $\det(A + B) \neq \det A + \det B$
- b) Find a 2×2 nonzero matrix C such that $\det(A + C) = \det A + \det C$

Q.3. The vectors u = (1,1,0), v = (4,3,1), w = (0,1,c) are linearly dependent. Find *c*.

- **Q.4.** Which of the following is a subspace of \Box^4 ? a) W is set of all vectors $(x_1, x_2, x_3, x_4) \in \Box^4$ such that $x_1 + x_3 = x_2 + x_4$.
- b) W is set of all vectors $(x_1, x_2, x_3, x_4) \in \Box^4$ such that $x_1 x_2 = x_3 + x_4$.

Q.5. Express the vector $\mathbf{t} = (-2, -2, 2, 2)$ as a linear combination of the vectors $\mathbf{u} = (1, 2, 1, 2), \mathbf{v} = (1, 2, 1, 0), \mathbf{w} = (0, 1, 2, 0).$

a) Verify that the solutions $y_1 = x$, $y_2 = x^2$, $y_3 = x^{-4}$ of the DE $x^3y''' + 4x^2y'' - 8xy' + 8y = 0$ are linearly independent on $(0, \infty)$. b) Find the solution of the IVP: $x^3y''' + 4x^2y'' - 8xy' + 8y = 0$; y(1) = 1, y'(1) = 1, y''(1) = 10

$$y = c_1 + c_2 e^{-3x}$$

Q.8. Find a basis of the subspace of \Box ⁵ consisting of all vectors (x, y, -y, x - y, z).

Find the inverse of the coefficient matrix and hence the solution of the following system

$$4x_{1} + 6x_{2} - 3x_{3} = 0$$

$$2x_{1} + 3x_{2} - 4x_{3} = 0$$

$$x_{1} - x_{2} + 3x_{3} = -7$$