King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

MATH 202 - Class Test - Term 132 Duration: 120 minutes

Name:	ID Number:	
Section Number:	Serial Number:	
Class Time:	Instructor's Name:	

Instructions:

- 1. Calculators and Mobiles are not allowed.
- 2. Write neatly and eligibly. You may lose points for messy work.
- 3. Show all your work. No points for answers without justification.
- 4. Make sure that you have 9 pages of problems (Total of 9 Problems)

Page	Points	Maximum
Number		Points
1		5
2		8
3		8
4		9
5		8
6		12
7		14
8		8
9		8
Total		80

Math 202, Class Test, Term 132 Page 1 of 9

1. (3 points) Find an interval centered about x = 1 for which the following a) Initial Value Problem has a unique solution

$$(x^{2}-4)y''+2xy'-3y=0, y(1)=0, y'(1)=-1$$

b) (2 points) Given that $y = c_1 x + c_2(1 + x^2)$ is the general solution of a differential equation. Find values of c_1 and c_2 for the Boundary Value Problem of the same equation with the boundary conditions y(0) = 0 and y(1) = 1.

Math 202, Class Test, Term 132 Page 2 of 9

2. (8 points) Verify that $y_1 = \sin(x^2)$ and $y_2 = \cos(x^2)$ form a fundamental set of solutions of the differential equation $xy'' - y' + 4x^3y = 0$ on the interval $(0, \infty)$. Form the general solution

Math 202, Class Test, Term 132 Page **3 of 9**

3. (4 points) a) Verify that $y_{p_1} = xe^{-x}$ and $y_{p_2} = x^2 - 8x + 23$ are respectively, particular solutions of

$$y'' + 3y' + y = (-x + 1)e^{-x}$$
 and $y'' + 3y' + y = x^2 - 2x + 1$

b) (4 points) Use part(a) to find a particular solution of

$$y'' + 3y' + y = (2x - 2)e^{-x} + 3(x - 1)^2$$

Math 202, Class Test, Term 132 Page 4 of 9

4. (9 points) Given that $y_1(x) = x + 1$ is a solution of the differential equation $(1 - 2x - x^2)y'' + 2(1 + x)y' - 2y = 0$. Use reduction of order to find a second solution $y_2(x)$.

Math 202, Class Test, Term 132 Page 5 of 9

5. (8 points) Solve $4y^{(4)} - 4y''' + 9y'' - 8y' + 2y = 0$ given that $y_1 = xe^{\frac{1}{2}x}$ is one of the solutions.

Math 202, Class Test, Term 132 Page 6 of 9

6. (12 points) Solve $y'' + 4y = \cos^2 x$ by undetermined coefficients method.

Math 202, Class Test, Term 132 Page 7 of 9

7. (14 points) Solve
$$y'' - 2y' + y = \frac{e^x}{1 + x^2}$$
.

Math 202, Class Test, Term 132 Page 8 of 9

8. (8 points) Use the substitution $x = e^t$ to transform the equation

$$x^2y'' - 4xy' + 6y = \ln x^2$$

into a differential equation with constant coefficients. (Do not solve the new equation)

Math 202, Class Test, Term 132 Page **9 of 9**

9. (8 points) Solve

$$x^{3}y''' + xy' - y = 0$$