King Fahd University of Petroleum and Minerals Department of Mathematics & Statistics Math 102(35) Class Test II spring 2013(132)

ID#:	NAME:	

Encircle the Right Answer with a Detail Solution- No Scores without a Complete Explanation

- 1. The area of the surface generated by rotating about the x-axis the curve $y=2\sqrt{x}$ from x=0 to x=8 is equal to:
 - (a) $\frac{216\pi}{3}$
 - (b) 104π
 - (c) $64\pi^2$
 - (d) $\frac{103\pi}{2}$
 - (e) $\frac{208\pi}{3}$

- 2. The base of a solid is a circle of radius 4 and center at the origin. If every cross section perpendicular to the y-axis is a square, then the volume of the solid is equal to:
 - (a) $\frac{1024}{3}$
 - (b) $\frac{64}{3}$
 - (c) $\frac{512}{3}$
 - (d) $\frac{128}{3}$
 - (e) $\frac{32}{3}$

- 3. The length of the arc of the curve $x = 2e^t$, $y = \frac{1}{2}e^{2t} t$ from t = 0 to t = 1 is equal
 - (a) 1
 - (b) $\frac{1}{2}(e^2+1)$
 - (c) $\frac{1}{2}(e^2 + e 1)$

 - (e) $\frac{1}{2}(e-1)$

- 4. If the region bounded by $y=x^4$, x=1, and the x-axis is revolved about the y-axis, then the volume of the resulting solid is equal to:
 - (a) $\frac{2\pi}{3}$
 - (b) $\frac{4\pi}{3}$ (c) $\frac{\pi}{15}$ (d) $\frac{\pi}{5}$ (e) $\frac{\pi}{3}$

5. The region bounded by $\sqrt{x} + \sqrt{y} = 1$ and x + y = 1 is revolved about the x-axis. Using the shell method, the volume generated is given by:

(a)
$$\int_0^1 2\pi y [(1-y)^2 - (1-\sqrt{y})^2] dy$$

(b)
$$\int_0^1 2\pi y [(1-\sqrt{y})^2 - (1-y)] dy$$

(c)
$$\int_0^1 \pi[(1-x)^2 - (1-\sqrt{x})^2] dx$$

(d)
$$\int_0^1 \pi [(1 - \sqrt{x})^2 - (1 - x)^2] dx$$

(e)
$$\int_0^1 2\pi y [(1-y) - (1-\sqrt{y})^2] dy$$

- 6. The graph of the curve $y + x = y^3 + x^3$ is symmetric about the:
 - (a) x-axis, y-axis and the origin.
 - (b) x-axis, y-axis and y = x.
 - (c) x-axis and y-axis.
 - (d) x-axis and y = x.
 - (e) origin and y = x.

- 7. The region bounded by $y=x^3$, y=0, and x=1 is rotated about the line x=2. The volume generated is equal to:
 - (a) $\frac{3}{5}$
 - (b) $\frac{3\pi}{5}$
 - (c) 3π
 - (d) $\frac{3\pi}{10}$
 - (e) $\frac{3\pi}{20}$

- 8. The region bounded by $y=\frac{1}{x^{2/5}}$ and the x-axis, $1\leq x\leq 2$, is revolved about the x-axis. The volume of the solid generated is equal to:
 - (a) $(5\pi)2^{1/5}$
 - (b) $2\pi(5^{1/2}-1)$
 - (c) $5\pi(2^{1/5}-1)$
 - (d) $\sqrt[3]{\pi}$
 - (e) $\frac{2\pi}{5}$

- 9. The arc length of the curve $x = \frac{y^3}{3} + \frac{1}{4y}$ from y = 1 to y = 3 is equal to:
 - (a) $\frac{5}{21}$
 - (b) $\frac{53}{6}$
 - (c) $\frac{56}{3}$
 - (d) $\frac{6}{53}$
 - (e) $\frac{35}{6}$

10. If the area bounded by $x = y^2$ and x - y = 2 is revolved about the line x = 4, then the volume of the solid generated is given by:

(a)
$$2\pi \int_{1}^{4} (4-x)(\sqrt{x}-x+2) dx$$

(b)
$$\pi \int_{-1}^{2} (2 - y^2 + y)^2 dy$$

(c)
$$\pi \int_{-1}^{2} (y^2 - 2 + y)^2 dy$$

(d)
$$\pi \int_{-1}^{2} [(4-y^2)^2 - (2-y)^2] dy$$

(e)
$$2\pi \int_{1}^{4} (4-x)(x-2-\sqrt{x}) dx$$