King Fahd University of Petroleum and Minerals Department of Mathematics & Statistics Math 102(25) Class Test Lapring 2012(122)

Math 102(35) Class Test I spring 2013(132)

ID#:	NAME:

Encircle the Right Answer with a Detail Solution- No Scores without a Complete Explanation

1.
$$\int_{0}^{\pi/2} \frac{dx}{1 + \tan^2 x} =$$

- (a) 2π
- (b) 0
- (c) $\pi/4$
- (d) $\pi/2$
- (e) π

$$2. \int_0^2 4 |2x - 1| dx =$$

- (a) 10
- (b) 8
- (c) 12
- (d) 14
- (e) 16

$$3. \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{\sqrt{1 - \cos^2 x}} =$$

- (a) $\ln(1-\sqrt{2})$
- (b) $\ln(1+\sqrt{2})$
- (c) $\ln(\sqrt{2} 1)$
- (d) 0
- (e) $\ln(\sqrt{2})$

- 4. The area bounded by the x-axis, the curve $y = \frac{1}{\sqrt{3x+1}}$, and the lines x = 0, x = 5, is:
 - (a) 1
 - (b) 6
 - (c) 2π
 - (d) 2
 - (e) 3
- 5. If the area bounded by the graph of y = f(x), $a \le x \le b$, and the x-axis is equal to $b^2(b-a)$, then f(x) is equal to:
 - (a) $x^2 xa$
 - (b) $3x^2 2xa$
 - (c) $2x^3 x^2a$
 - (d) $2x^3 xa$
 - (e) $x^3 xa$
- 6. The slope of the tangent to the curve $y = \int_0^{\sqrt{x}} e^{-t^2} dt$, (x > 0) at x = 4 is given by:
 - (a) e^{-4}
 - (b) e^{-16}
 - (c) $-8e^{-16}$
 - (d) $\frac{1}{4}e^{-4}$
 - (e) $e^{-4} 1$

$$7. \int_{-1}^{0} \frac{dx}{x^2 + 2x + 2} =$$

- (a) $\frac{\pi}{2}$
- (b) $-\frac{\pi}{4}$
- (c) $\frac{\pi}{4}$
- (d) $-\frac{\pi}{2}$
- (e) $\frac{5\pi}{4}$

$$8. \int \frac{dx}{\sqrt{x}(1+\sqrt{x})} =$$

- (a) $\ln(1+\sqrt{x}) + C$
- (b) $\ln \sqrt{1+x} + C$
- (c) $\frac{(1+\sqrt{x})^{3/2}}{3/2} + C$
- (d) $\ln(1 + x + 2\sqrt{x}) + C$
- (e) $\frac{(1+\sqrt{x})^{1/2}}{1/2} + C$

9. The area bounded by the graphs of $x = y^2 - y$ and $x = y - y^2$ is equal to:

- (a) 2
- (b) $\frac{2}{3}$
- (c) $\frac{1}{3}$
- (d) 1
- (e) 4

$$10. \int \frac{\sec^2 x \, dx}{\tan x \sqrt{\tan^4 x - 1}} =$$

(a)
$$\frac{1}{2}\tan x + C$$

(b)
$$\frac{1}{2} \tan^{-1}(\sec^2 x) + C$$

(c)
$$2\sec^{-1}(\tan^2 x) + C$$

(d)
$$\frac{1}{2} \sec^{-1}(\tan x^2) + C$$

(e)
$$\frac{1}{2}\sec^{-1}(\tan^2 x) + C$$

11.
$$\int \sqrt{1 + \tan x} (1 + \tan^2 x) dx$$
 is equal to:

(a)
$$\frac{1}{2}(1+\tan x)^{-\frac{1}{2}}+C$$

(b)
$$\frac{2}{3}(1+\tan x)^{3/2}+C$$

(c)
$$\frac{1}{2}\sec^2 x + C$$

(d)
$$2(x + \tan x)^{1/2} + C$$

(e)
$$\frac{3}{2}(1+\tan x)^{3/2}+C$$

12. The area bounded by the curve
$$y = \tan x$$
, the x-axis, $x = -\frac{\pi}{3}$, and $x = \frac{\pi}{3}$ is equal to:

(a)
$$\frac{2}{\sqrt{3}}$$

(b)
$$\ln \frac{3}{4}$$

(c)
$$\ln \frac{2}{\sqrt{3}}$$

(e)
$$\ln \frac{4}{3}$$

- 13. $\frac{d}{dx} \int_{\sqrt{3}}^{2} \frac{\sqrt{x^2 3}}{x} dx$ is equal to:
 - (a) $\frac{1}{\sqrt{3}} \frac{\pi}{6}$
 - (b) $\tan 2 + \sqrt{3} (\tan \sqrt{3} + 2)$
 - (c) 0
 - (d) $\frac{1}{\sqrt{3}} \frac{\pi}{3}$
 - (e) $\frac{1}{\sqrt{3}} + \frac{\pi}{3}$
- 14. $\int \frac{x+1}{\sqrt{4-x^2}} dx$ is equal to:
 - (a) $\sqrt{4-x^2} \sin^{-1}\frac{x}{2} + C$
 - (b) $-\sqrt{4-x^2} + \sin^{-1} x + C$
 - (c) $-\frac{2}{\sqrt{4-x^2}} + \sin^{-1}\frac{x}{2} + C$
 - (d) $-\sqrt{4-x^2} + \sin^{-1}\frac{x}{2} + C$
 - (e) $-\sqrt{4-x^2} + \sin^{-1} 2x + C$
- 15. $\int_{a}^{e^2} \frac{dx}{x \ln x}$ is equal to:
 - (a) 2
 - (b) $e^4 e^2$
 - (c) ln 2
 - (d) 2 ln 2
 - (e) $\frac{e^2-1}{2e^4}$

Dr. M. R. Alfuraidan