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KK1 Introduction to Survival Analysis
Time =survival time Event =failure
Left-censored: true survival time � the observed survival time
Right-censored: true survival time � observed survival time
Interval-censored: true survival time is within a known time interval

Left censoring ) t1 = 0; t2 =upper bound Right censoring ) t1 =lower bound; t2 =1
d =

�
1 if failure
0 censored

S(t) = survivor function
S(t) = P (T > t)

hazard function h(t) = lim
�t!0

P (t � T < t+�tjT � t)
�t

Hazard function =conditional failure rate h(t) = instantaneous potential
Relationship of S(t) and h(t): If you know one, you can determine the other. h(t) = � i¤ S(t) = e��t

h(t) = �
�
dS(t)=dt

S(t)

�
S(t) = exp

h
�
R t
0
h(u)du

i
Ŝ(t) = observed survivor function

Goals of Survival Analysis: 1) To estimate & interpret survivor &/or hazard functions from survival data.
(2) To compare survivor and/or hazard functions. (3) To assess the relationship of explanatory variables to
survival time. Use math modeling, e.g., Cox proportional hazards

Descriptive measures of survival experience: Average survival time : T =
1

n

nP
i=1

ti
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Linear regression Logistic regression Survival analysis
Measure of e¤ect: regression coe¢ cient � odds ratio e� hazard ratio e�

Censoring Assumptions: a) Independent (vs.non-independent) censoring
b) Random (vs. non-random) censoring c) Non-informative (vs. informative) censoring

KK2:Kaplan-Meier Curves and the Log-Rank Test

Kaplan Meier curves (see also KPW12). S(t(f)) = S(t(f�1))P (T > t(f)jT � t(f)) =
fQ
i=1

P (T > t(i)jT � t(i))

Note: Kaplan-Meier product limit estimator comes from the probablity rule P (A\B) = P (A)�P (BjA)
Log-Rank Test for no di¤erence in survival curves of Several Groups: d0V�1d v �2G�1; i = 1; 2; � � � ; G

d = (O1 � E1; O2 � E2; � � � ; OG�1 � EG�1)0 f = 1; 2; � � � ; k time intervals for the G groups

V = ((vij)) Oi � Ei =
kX
f=1

(mif � eif ) vii = V ar(Oi � Ei) =
kX
f=1

nif (nf � nif )mf (nf �mf )

n2f (nf � 1)
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�nifnjfmf (nf �mf )

n2f (nf � 1)
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GX
i=1
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nif
nf
mf nf =

GX
i=1

nif

Log-Rank Test for no di¤erence in survival curves of 2 Groups:
(Oi � Ei)2
V ar(Oi � Ei)

v �21; i = 1; 2 where
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X
f

(mif � eif ); V ar(Oi � Ei) =
X
f

n1fn2f (m1f +m2f )(n1f + n2f �m1f �m2f )

(n1f + n2f )2(n1f + n2f � 1)

eif =

�
nif

n1f + n2f

�
(m1f +m2f ) = expected counts=(proportion in risk set)� (#failures over both groups)

mif = observed counts for the ith group at time f:

Approximate formula:
PG

i�1
(Oi � Ei)2

Ei
v �21; i = 1; 2:

Alternative tests for 2 groups: Test statistic:

 P
f

w(t(f))(mif � eif )
!2

V ar

 P
f

w(t(f))(mif � eif )
!

where LogRank Wilcoxon Tarone-Ware Peto Flamington-Harrington
w(t(f)) =weights at 1 nf

p
nf ~s(t(f)) Ŝ(t(f�1))

p[1� Ŝ(t(f�1))]q
the f th failure time. p = 0!LogRank

KK3-KK6: Cox Models

KK3. Cox PH KK5. Strati�ed Cox PH
KK6. Cox PH for
Time-dependent Variables

Model h0(t) exp(
Pp

i=1 �iXi)
h0g(t) exp(

Pp
i=1 �iXi)

g = 1; 2; � � � ; k h0(t) exp(
Pp1

i=1 �iXi +
Pp2

j=1 �jXj)

HR:
h(t;X�)

h(t;X)
exp [

Pp
i=1 �i (X

�
i �Xi)]

exp[
Pp1

i=1 �i (X
�
i �Xi))

+
Pp2

j=1 �j
�
X�
j �Xj

�
]

Meaning PH
h(t;X�)

h(t;X)
= � PH not satis�ed

General model
to assess

Interaction:
h0g(t) exp(

Pp
i=1 �igXi)

g = 1; 2; � � � ; k strata
de�ned from Z�

PH assumption of Cox PH:
h0(t) exp(

Pp
i=1 �iXi +

Pp
i=1 �iXigi(t))

where gi(t) is time-dependent fn

or h0g(t) exp[
Pp

i=1 �iXi
+
Pk�1

g=1

Pp
i=1 �igXiZg]

heaviside gi(t) =
�
1 if t in interval i
0 otherwise

Likelihood ratio
(LR) test

�2 lnLR � (�2 lnLF )
LR _��2#parameters in F�R

�2 lnLR � (�2 lnLF )
LR _��2p(k�1)

�2 lnLR � (�2 lnLF )
LR _��2#parameters in F�R
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95% Con�dence Interval for Hazard Ratio, HR = exp(`) where ` = �1 +
kP
i=1

�iWi :

exp(^̀+ 1:96

qdV ar(^̀)) where V ar(^̀) = V ar(�̂1 + kP
i=1

�̂iWi)

Adjusted survival curve.
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Z t
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"
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Z t

0

h0(u) exp(
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i=1
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#
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0
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=
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�
Z t

0
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i=1 �iXi)

= [S0(t)]
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i=1 �iXi)

KK4. Methods for checking PH assumptions
Method Ideas Details

1) Graphical
a) ln(� lnS(t) vs t

b) Obs vs predicted S(t)
ln(� lnS(t) =

Pp
i=1 �iXi + ln(� lnS0(t))

a linear function

2) Time dependent covariate interaction terms: X � g(t)
h0(t) exp(

Pp
i=1 �iXi +

Pp
i=1 �iXigi(t))

Test for H0: �1 = �2 = � � � = �p = 0
using LR with �2p

3) Goodness of �t large sample Z test Schoenfeld Residuals. Use p-values

.

If PH assumption not met, use strati�ed Cox or Cox with time-dependent covariates.

KPW11. Estimation of Complete Data

De�nition 1 (D11.1) A data-dependent distribution is at least as complex as the data or knowledge that
produced it, and the number of "parameters" increases as the number of data points or amount of knowledge
increases.

De�nition 2 (D11.2) A parametric distribution is a set of distribution functions, each member of which
is determined by specifying one or more values called parameters. The number of parameters is �xed and
�nite.

De�nition 3 (D11.3) The empirical distribution is obtained by assigning probability 1=n to each data
point.

De�nition 4 (D11.4) A kernel smoothed distribution is obtained by replacing each data point with a
continuous random variable and then assigning probability 1=n to each such random variable. The random
variables used must be identical except for a location or scale change that is related to its associated data
point.

De�nition 5 (11.5) The empirical distribution function is Fn(x) =
number of observations � x

n
; when

n is the total number of observations.

De�nition 6 (11.6) The cumulative hazard rate function H(x) = � lnS(x). The name comes from

the fact that, if S(x) is di¤erentiable, H 0(x) = �S
0(x)

S(x)
=
f(x)

S(x)
= h(x); and then H(x) =

R x
�1 h(y)dy.

De�nition 7 (11.7) Where the risk set ri =
Pk

j=i sj =number of observations � yi; the

Nelson-Åalen estimate of cumulative hazard rate function bH(x) =
8>>>><>>>>:
0; x < y1
j�1P
i=1

si
ri
; yj�1 � x < yj ; j = 2; :::k;

kP
i=1

si
ri
; x � yk

De�nition 8 (11.8) For grouped data, the distribution function obtained by connecting the values of the
empirical distribution function at the group boundaries with straight lines is called the ogive as below

Fn(x) =
cj � x
cj � cj�1

Fn(cj�1) +
x� cj�1
cj � cj�1

Fn(cj); cj�1 � x � cj :
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De�nition 9 (11.9) For grouped data, the empirical density function can be obtained by di¤erentiating
the ogive. The resulting function is called a histogram as below

fn(x) =
Fn (cj)� Fn (cj�1)

cj � cj�1
=

nj
n (cj � cj�1)

; cj�1 � x � cj :

KPW12. Estimation of Modi�ed Data (See also KK2)

De�nition 10 (12.1) Observations can be truncated or censored from above (right) or below (left).
from below at d (or left ) from above at u (or right )

observation truncated censored observation truncated censored
x � d not recorded or missing d x < u x x
x > d x x x � u not recorded or missing u

Example deductible policy limit

rj = (number of dis < yj) - (number of xis < yj ) - (number of uis < yj ) (12.1)

rj = rj�1 + (number of dis between yj�1 and yj)� (number of xis equal to yj�1)
�(number of uis between yj�1 and yj) (12.2)

sj = # of time the uncensored event yj occurs in the sample.

Kaplan-Meier estimate Sn(x) =

8>>>><>>>>:
1; 0 � t < y1
j�1Q
i=1

�
ri � si
ri

�
; yj�1 � x < yj ; j = 2; :::k;

kQ
i=1

�
ri � si
ri

�
or 0; t � yk

Greenwood�s approximation formula: dV ar[Sn(yj)] = Sn(yj)2 jP
i=1

si
ri(ri � si)

: (12.3)

De�nition 11 (12.2) A kernel density estimator of a distribution function is bF (x) = kP
j=1

p (yj)Kyj (x)

and the estimator of the density function is bf(x) = kP
j=1

p (yj) kyj (x),

De�nition 12 (12.3) The following de�nes 3 popular kernel smoothing methods:
Uniform kernel Triangular kernel Gamma kernel

ky(x)

8><>:
0; x < y � b;
1

2b
; y � b � x � y + b;

0; x > y + b;

8>>>>><>>>>>:

0; x < y � b;
x� y + b

b2
; y � b � x � y;

y + b� x
b2

; y � x � y + b;
0; x > y + b;

x��1e�x�=y

(y=�)
�
� (�)

shape � and
scale parameter y=�

Ky(x)

8><>:
0; x < y � b;
x� y + b

2b
; y � b � x � y + b;

1; x > y + b:

8>>>>><>>>>>:

0; x < y � b;
(x� y + b)2

2b2
; y � b � x � y;

1� (y + b� x)
2

2b2
; y � x � y + b;

1; x > y + b:

Gamma kernel has
mean � (y=�) = y &

variance � (y=�)2 = y2=�

.

Exposure method Exposure de�nition qj

Exact exposure = exact total time under observation qj = 1� exp(�dj=ej)
Actuarial exposure period extend to end of age interval qj = dj=ej

Life insurance Exposure method Exposure de�nition
Insuring Ages based on policy holder�s age at entry

Anniversary based based on when the policy reach its anniversary
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Interval-based
Exposure method UDD exposure (risk set) midyear exposure (risk set)

Exact Pj + (nj � dj � wj)=2 Pj + (nj � wj)=2
Actuarial Pj + (nj � wj)=2 Pj + (nj � wj)=2

Pj=number who start
nj=new entrants
dj=number who die
wj=number leave

KPW13. Frequentist Estimation

De�nition 13 (13.1) Amethod-of-moments estimate of � is any solution of the p equations �0k(�) = b�0k;
k = 1; 2; :::; p.

De�nition 14 (13.2) A percentile matching estimate of � is any solution of the p equations �gk(�) =b�gk ; k = 1; 2; :::; p; where g1; g2; :::; gp are p arbitrarily chosen percentiles. From the de�nition of percentile,
the equations can also be written as F (b�gk j�) = gk; k = 1; 2; :::; p:

De�nition 15 (13.3) The smoothed empirical estimate of a percentile is calculated as b�g = (1�h)x(j)+
hx(j+1), where j = b(n + 1)gc and h = (n + 1)g � j. Here b�c indicates the greatest integer function and
x(1) � x(2) � ::: � x(n) are the order statistics from the sample.

De�nition 16 (13.4) The likelihood function is L(�) =
nQ
j=1

Pr(Xj 2 Aj j�) and themaximum likelihood

estimate of � is the vector that maximizes the likelihood function.

Theorem 17 (T13.5) Assume that the pdf (or pf in the discrete case) f(x; �) satis�es the following for �
in an interval containing the true value (for discrete variables, replace integrals by sums):

(i) ln f(x; �) is three times di¤erentiable with respect to �:

( ii)

Z
@

@�
f(x; �)dx = 0: This formula implies that the derivatives may be taken outside the integral

and so we are just di¤erentiating the constant 1.

( iii)

Z
@2

@�2
f(x; �)dx = 0: This formula is the same concept for the second derivative.

( iv)�1 <

Z
f(x; �)

@2

@�2
ln f(x; �)dx < 0: This inequality establishes that the indicated integral exists

and that the location where the derivative is zero is a maximum:

( v)There exists a function H(x) such that
Z
H(x)f(x; �)dx <1 with

���� @3@�3 ln f(x; �)
���� < H(x): This

inequality makes sure that the population is not overpopulated with regard to extreme values.

Then the following results hold:

(a) As n ! 1; the probability that the likelihood equation [L0(�) = 0] has a solution goes to 1:
(b) As n ! 1; the distribution of the mle b�n converges to a normal distribution with mean �

and variance such that I(�)V ar
�b�n�! 1; where the Fisher�s information

I(�) = �nE
�
@2

@�2
ln f(X; �)

�
= �n

Z
f(x; �)

@2

@�2
ln f(x; �)dx

= nE

"�
@

@�
ln f(X; �)

�2#
= n

Z
f(x; �)

�
@

@�
ln f(x; �)

�2
dx:

That is, lim
n!1

Pr

 b�n � �
[I(�)]

�1=2 < z

!
= �(z):

Theorem 18 (T13.6-Delta Method) Let Xn = (X1n; :::; Xkn)
T be a multivariate random variable of

dimension k based on a sample of size n. Assume that X is asymptotically normal with mean � and
covariance matrix �=n, where neither � nor � depend on n. Let g be a function of k variables that is totally
di¤ erentiable. Let Gn = g (X1n; :::; Xkn). Then Gn is asymptotically normal with mean g(�) and
variance (@g)T � (@g) =n, where @g is the vector of �rst derivatives, that is, @g = (@g=@�1; � � � ; @g=@�k)T
and it is to be evaluated at �, the true parameters of the original random variable.
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KPW14. Frequentist Estimation for Discrete Distributions

Negative Binomial: The moment equation are r� =
P1

k=0 knk
n

= x. (14.1)

and r� (1 + �) =

P1
k=0 k

2nk
n

�
�P1

k=0 knk
n

�2
= s2: (14.2)

@l

@�
=

1P
k=0

nk

�
k

�
� r + k

1 + �

�
: (14.3)

and
@l

@r
= �

1X
k=0

nk ln(1 + �) +
1X
k=0

nk
@

@r
ln
(r + k � 1) :::r

k!
= �n ln(1 + �) +

1X
k=0

nk
@

@r
ln

k�1Y
m�0

(r +m)

= �n ln(1 + �) +
1X
k=0

nk
@

@r

k�1X
m�0

ln(r +m) = �n ln(1 + �) +
1X
k=0

nk

k�1X
m�0

1

r +m
: (14.4)

Setting these (14.4) to zero yields b� = brb� = P1
k=0 knk
n

= x (14.5) and n ln(1+b�) = 1P
k=0

nk

�
k�1P
m�0

1br +m
�
:(14.6)

H(br) = n ln�1 + xbr
�
�

1P
k=0

nk

�
k�1P
m�0

1br +m
�
= 0 (14.7)

Binomial: bq = 1bm
P1

k=0 knkP1
k=0 nk

; (14.8)

The (a,b,1) class: x
�
1� e��

�
=
n� n0
n

�: (14.9) x =
1� bpM0
1� p0

�: (14.10)

Zero-modi�ed Binomial: x =
1� bpM0
1� p0

mq; (14.11) l1 =
1P
k=1

nk ln pk � (n�n0) ln(1� p0); (14.12)

Hence; l1 =

1X
k=1

nk ln

"�
k + r � 1

k

��
1

1 + �

�r �
�

1 + �

�k#
� (n� n0) ln

�
1�

�
1

1 + �

�r�
: (14.13)

gk =
�

k

kP
j=1

jfjgk�j ; k = 1; 2; 3:::::; (14.14) where fj = �
j�1=(1 + �)j ; j = 1; 2; 3:::::

KPW15. Bayesian Estimation

De�nition 19 (D15.1) Prior distribution �(�) is a probability distribution over the space of parameter
values. It represents our opinion about the relative chances various � values are the true parameter value.

De�nition 20 (D15.2) Improper prior distribution is one for which the probabilities (or pdf) are non-
negative but their sum (or integral) is in�nite.

De�nition 21 (D15.3) The model distribution fXj�(xj�) is the probability distribution for the data given
a particular value of the parameter.

De�nition 22 (D15.4) The joint distribution fX;�(x; �) has pdf fX;�(x; �) = fXj�(xj�)�(�).

De�nition 23 (D15.3) The marginal distribution of X has pdf fX(x) =
R
fXj�(xj�)�(�)d�.

De�nition 24 (D15.6) The Posterior distribution ��jX(�jx) is the conditional probability distribution
of parameter values given the observed data.

De�nition 25 (D15.7) The Predictive distribution fY jX(yjx) is the conditional probability distribution
of a new observation y given the observed data x.

Theorem 26 (T15.8) The posterior distribution can be computed as ��jX(�jx) =
fXj�(xj�)�(�)R
fXj�(xj�)�(�)d�

while the predictive distribution can be computed as fY jX(yjx) =
R
fY j�(yj�)��jX(�jx)d�;

where fY j�(yj�)is the pdf of the new observation given the parameter value.

Inference and Prediction
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De�nition 27 (D15.9) A loss function lj(�̂j ; �j) describes the penalty paid by the investigator when �̂j =
estimator while �j =true value of the jth parameter.

De�nition 28 (D15.10-12) The Bayes estimate for a given loss function is the one that minimizes the
expected loss given the posterior distribution of the parameter in question.

Square error absolute error zero-one

loss function lj(�̂j ; �j) (�̂j � �j)2
����̂j � �j��� 0 if �̂j = �j

1 if �̂j 6= �j
Bayes estimate mean median mode of ��jX(�jx)

De�nition 29 (D5.13) The points a < b de�nes a 100(1 � �)% credibility interval for �j provided that
Pr(a < �j < bjx) � 1� �:

Theorem 30 (T15.14) If the posterior random variable �j jx is continuous and unimodal, then the 100(1�
�)% credibility interval with the smallest width b-a is the unique solution toZ b

a

��j jX(�j jx)d�j = 1� � =) ��jX(ajx) = ��jX(bjx):

The interval is a special case of a highest posterior density (HPD) credibility set.

De�nition 31 (D15.15) For any posterior distribution, the (1� �)100% HPD credibility set is the set
of parameter values C such that

Pr(�j 2 C) � 1� � and C =
�
�j : ��j jX(�j jx) � c

	
for some c

where c is the largest value for which the probability inequality holds.

Theorem 32 (T15.16: Bayesian Central Limit Theorem) If �(�) and fXj�(xj�) are both twice dif-
ferentiable in the elements of � and other commonly satis�ed assumptions hold, then the posterior
distribution of � given X = x is asymptotically normal. (see Theorem T13.5 for commonly satis�ed as-
sumptions).

De�nition 33 (D15.17) A prior distribution is said to be a conjugate prior distribution for a given
model if the resulting posterior distribution is from the same family as the prior (but perhaps with di¤erent
parameters).

Theorem 34 (T15.18) Suppose for � = �; the random variables X1; X2; � � � ; Xn are i.i.d. with pf

fXj j�(xj j�) =
p(xj)e

r(�)xj

q(�)
where � has pdf �(�) =

[q(�)]
�k
e�kr(�)r0(�)

c(�; k)
;

k and � are parameters of the distribution and c(�; k) is the normalizing constants. Then the posterior pf
��jX(�jx) is of the same form as �(�):

KPW16. Model Selection

Models: :F �(x) =

8<: 0 x < t;
F (x)� F (t)
1� F (t) x � t: f�(x) =

8<: 0 x < t;
f(x)

1� F (t) x � t:

Models to data Graphical comparison: Check discrepanices (1) Empirical & model plot (Fn(x) & F �(x) vs x
plot) (2) Deviation plot (D(x) = Fn(x)� F �(x) v x plot) (3) Probability p� p plot: check for straight 45�
line

Hypothesis tests

A)
Ho: Data came from population with stated model
vs Ha: Data did not come from such population

�
!(1) KS (2) AD (3) Chi-Square GoF test

(1) Kolmogorov-Smirnov (KS) Test: Statistic D = max
t�x�u

jFn(x)� F �(x)j where
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t =left truncation point (t = 0 if no truncation) u =right censoring point (u =1 if no censoring):
If D � CV don�t reject Ho
D > CV reject Ho;

where � 0:10 0:05 0:01
critical value 1:22=

p
n 1:36=

p
n 1:63=

p
n

(2) Anderson-Darling (AD) Test: Statistic A2 = n
R u
t

[Fn(x)� F �(x)]2

F �(x) [1� F �(x)]f
� (x) dx

A2 = �nF �(u)+n
kX
j=0

[1� Fn(yj)]2 fln [1� F �(yj)]�ln [1� F �(yj+1)]g+n
kX
j=1

Fn(yj)
2 [lnF �(yj+1)� lnF �(yj)]

If A2 � CV don�t reject Ho
A2 > CV reject Ho;

where � 0:10 0:05 0:01
critical value 1:933 2:492 3:857

(3) Chi-Square goodness of �t (GoF) Test: Statistic �2df =
Pk

g=1

n(p̂g � png)2
p̂g

=
Pk

g=1

(Eg �Og)2
Eg

where t = c0 < c1 < � � � < ck < u � 1; p̂g = F
�(cg)� F �(cg�1) png = Fn(cg)� Fn(cg�1);

Eg = np̂g; Og = npng; df = k � 1�#parameter:
If �2df � CV don�t reject Ho
�2df > CV reject Ho;

where CV = �2df;1�� is from a �2 table.

B) Ho: Data came from population with distribution model A
vs Ha: Data came from population with distribution model B (where A is special case of B).
Likelihood ratio (LR) Test: Statistic T = 2 ln(La=L0) = 2(lnLa � lnL0) (c.f. LR tests in Cox Models)

If T � CV don�t reject Ho
T > CV reject Ho;

where L0 =Likelihood function maximized under Ho
La =Likelihood function maximized under Ha.

CV = �2df;1�� is from a �2 table and df = #parameterHa
�#parameterH0

:

Selection of Models: (1) Use a simple model if possible (2) Restrict universe of potential models
A) Judgement-based approach
B) Score-based approach: Some scores worth considering:
� Lowest value of (i) Kolmogorov-Smirnov (ii) Anderson-Darling (iii) Chi-square goodness of �t statistic

� Highest (iv) value of the likelihood function at its maximum (v) p-value for the Chi-square GoF statistic

KK7. Parametric Survival Models

Weibull Exponential Log-logistic
h0(t) ptp�1 exp(�0) exp(�0) complicated form

h(t;X) �ptp�1 �
�ptp�1

1 + �tp
p < 1 decreasing
p = 1 constant
p > 1 increasing

Weibull(p = 1)
p � 1 decreasing
p > 1 increase

then decrease
PH form � = exp(�0 +

P
�iXi) � = exp(�0 +

P
�iXi)

PO form � = exp(�0 +
P
�iXi)

S(t) exp(��tp) exp(��) 1

1 + �tp

HR (TRT = 1 vs 0) exp(�1) exp(�1)
ln [� lnS(t)] ln(�) + p ln(t)
Failure odds
1� S(t)
S(t)

�tp

ln(failure odds) ln(�) + p ln(t)

f(t) = h(t)S(t) �ptp�1 exp(��tp) � exp(��) �ptp�1

(1 + �tp)
2

AFT t t = [� lnS(t)]1=p � 1

�1=p
t = [� lnS(t)]� 1

�
t =

�
1

S(t)
� 1
�1=p

� 1

�1=p
1

�1=p
= exp(�0 +

P
�iXi)

1

�
= exp(�0 +

P
�iXi)

1

�1=p
= exp(�0 +

P
�iXi)

�i vs �i �i = ��ip �i = ��i �i = ��ip
Accelaration   = exp(�0)  = exp(�0)  = exp(�0)

AFT)PH then PH)AFT AFT = PH
AFT , PO
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General form LogNormal Gompertz
h0(t) exp(t)
h(t;X) � exp(t)

 < 0 exponentially
decreasing

 = 0 constant
 > 0 exponentially

increasing
PH form � = exp(�0 +

P
�iXi)

t t = exp(�0 +
P
�iXi + ��) t = exp(�0 +

P
�iXi + ��) t = exp(�0 +

P
�iXi + �)

AFT � v N(0; 1)

Frailty Models: hj(t;Xj�j) = �jh(t;X) j = 1; 2; � � � ; n with �� = 1 and variance� = �
model with Gamma frailty: � ~ gamma (�� = 1;variance� = �)

Weibull with gamma frailty HR(TRT=2 vs 1)=

(
exp(�1) �1 = �2
�1
�2
exp(�1) �1 6= �2

unconditional hazard with gamma frailty: hU (t;X) =
h(t)

1� � lnS(t)
KK8. Recurrent Event Survival Analysis: Events can occur more than 1 times during study,

(1) Counting Process (CP) with Cox PH (2) Strati�ed Cox PH (3) Parametric with frailty model
(1) Counting Process (CP) with Cox PH model
standard cox: h(t;X) = h0(t) exp(

P
�iXi)

likelihood function is di¤erent than nonrecurrent event (subjects remain in risk set until last follow-up
interval )
Robust estimation for variance estimators: R̂(�̂) = dVar(�̂)[R̂0

SR̂S]dVar(�̂) where dVar(�̂)=information
matrix and R̂S=matrix of score residuals.
(2) Strati�ed Cox PH models for recurrent times: time interval =strata
no interaction strati�ed cox: hg(t;X) = h0g(t) exp(

P
�iXi) or

interaction strati�ed cox: hg(t;X) = h0g(t) exp(
P
�igXi)

Robust estimation for variance estimators
(a) Strati�ed Counting Process approach: time interval = time from (k � 1)st to kth event
(b) Gap Time approach: time interval = additional time between 2 recurrent events
(c) Marginal Time approach: time interval = total time to kth event

(3) Parametric with shared frailty model
Survival curves with recurrent events: on one ordered event at a time.
Sk(t) = Pr(Tk > t) where Tk=survival time up to occurence of kth event.

a) Strati�ed Skc(t) = Pr(Tkc > t) Tk=time from (k � 1)st to kth event:restricts data to subjects with (k � 1) events
b) Marginal Skm(t) = Pr(Tkm > t) Tk=time from study entry to kth event: ignores previous events.

KK9. Competing Risk Survival Analysis

Only one event of di¤erent type can occur to a subject during study: Events compete with each other.
Usually one event is death. Example: Accidental, Illness vs natural death.
(1) Separate models for each event type (2) Lunn-McNeil (LM) approach

(1) Separate models for each event type
Use Cox PH model for each hazard separately while treating other competing risks as censored.
cause-speci�c hazard function: hc(t) = lim�t!0 P (t � Tc � t + �t)=�t where Tc=time to failure

from event c, c = 1; 2; � � � ; C:
cause-speci�c model: hc(t;X) = h0c(t) exp(

Pp
i=1 �icXi) c = 1; 2; � � � ; C.

Independence Assumptions: Independent censoring. Competing risks are independent.
Cumulative Incidence Curves (CIC): KM curves may not be informative.
alternative to KM curves for competing risks. CIC(tf ) =

Pf
f 0=1 Îc(tf 0) =

Pf
f 0=1 Ŝ(tf 0�1)ĥc(tf 0)

Conditional Probability Curves (CPC): CPCc = P (Tc � tjT � t) where Tc =time until event c occurs
while T=time until any competing risk event occurs
CPCc = CICc=(1� CICc)
(a) Pepe & Mori (1993) test for 2 CPC curves (b) Lunn (1998) test for g CPC curves

(2) Lunn-McNeil (LM) approach: uses an augmented data layout
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