KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS Term 131

STAT 319 Statistics for Engineers and Scientists

Second Major Exam			Monday October 28, 2013			
Please check/circle your inst	ructor's name					
□ Abbasi □ Anabosi	□ Jabbar	□ Al-Sabah	□ Saleh	□ Alsawi		

Name	<u>Key</u>	ID #	Section#
	Λ		

©Important Note:

Show all your work including formulas, intermediate steps and final answer.

Question	Full Marks	Marks Obtained
1	21	
2	3	
3	.5	
4	6	
5	5	
Total	40	

IGR = A \overline{A} \overline{A}

1)	The following data are the temperatures of effluent at discharge from a sewage treatmen
	facility on consecutive days:

36	39	41	41	`42	42	42	43
44	44	44	45	46	46	52	55

a) Calculate the mean, median, mode and variance. (You may want to use
$$\sum x = 702$$
, and $\sum x^2 = 31114$)

$$Mcon = \frac{70^{2}}{76} = 43.345$$

$$Medvan = \frac{43+44}{2} = 43.5$$

Mode = 42 and 44(1)
Vanime
$$5^2 = \frac{1}{15} \left[\frac{31114 - (702)^2}{16} \right] = 20.916(1)$$

$$S = 4.573$$
;
 $\bar{x} \pm S \Rightarrow [39.677, 48.823]$

/age of Lata within one standard devolum is 12 x 100 = 75 %.

Thus the empirical rule is not satisfied

(3pts.)

 $= \frac{1}{16} \left[(37.5 \times 2) + (42.5 \times 9) + (47.5 \times 3) + (52.5 \times 1) + (57.5 \times 1) \right]$

Affective				
class]	7	X		x j
[35,40)	2	37.9	5	75
[49 45)	19	42.	5 -	382-5
[45, 50)	13	47	5/1	42-5
[50,55)	1	15	2.5	525
L55,66)		1 5	7.5	57.5
Total	T	161		/

$$= 44.375 = \frac{710}{16}$$

f) Construct a box plot of the data, and comment.

 $Q_1 = (41.25)$, $Q_2 = 43.5$, $Q_3 = (45.75)$

(|pt) - The middle 50% of the clash is relatively tight

(1pt) - The Lake over to be skewed to the right

g) Find 96th percentile and explain its meaning in terms of the temperature of sewage

Position of 90 th percentile Page

 $(0.90) \times 17 = (15.3)$

Thus the 90 th percentile is 52+ 0.3(55-52)

£ 52.9 = (17(52) + 0-3(55) (1pt)

: 90% of the effluent diskherje has temperature less than 52.9

2) The proportion of impurities Y in a batch of product of a chemical process has the density function

$$f(y) = 10 (1-y)^9$$
 $0 < y < 1$
0 elsewhere

A batch is considered not acceptable if the percentage of impurities exceeds 60%. What is the percentage of batches that are not acceptable? (3pts.)

$$P(bakh is not acceptable) = P(470.6) (141)$$

$$= \int_{0.6}^{10(1-y)^{9}} dy$$

$$= (1-y)^{10} \Big|_{0.6}^{10}$$

$$= (0.4)^{10}$$

$$= 1.04 \times 10^{-4} (141)$$

$$=$$

3) The reliability of an electrical fuse is the probability that a fuse, chosen at random from production, will function under its designed conditions. A random sample of 1000 fuses was tested and 27 defectives were observed. Calculate the approximate probability of observing 27 or more defectives, assuming that the fuse reliability is 0.98.

$$(1pt) \begin{cases} \text{Lit } X = \# \text{ of all further fusion} & (1pt) & (1pt) \\ X \sim B(1000, 0.02) & ; \quad \mu_X = 20, \quad \sigma_X = 4.4272 \\ X \sim B(1000, 0.02) & ; \quad \mu_X = 20, \quad \sigma_X = 4.4272 \\ P(X \ge 27) \cong P(Z \ge \frac{27 - 20 - 1/2}{4.43}) \\ = P(Z \ge 1.467) = P(Z \le -1.47) \\ = 1 - 0.4289 \\ = 0.0708 \qquad (1pt) \end{cases}$$

- 4) Light bulbs produced by a certain manufacturer have a useful life that is normally distributed with a mean of 250 hours and a variance of 2500.
 - a) What is the probability that a randomly selected bulb from this production process will have a useful life between 190 and 270 hours?

 (4pts.)

X: life of light bulb;
$$X \sim X(250,2500)$$

$$P(190 \le X \le 270) = P(\frac{190-250}{50} \le Z \le \frac{270-250}{50}) \text{ (Ipt)}$$

$$= P(-1.2 \le Z \le 0.4)$$

$$= P(Z \le 0.4) - P(Z \le -12)$$

$$= P(Z \le 0.4) - P(Z \le -12)$$

- 0.5403

(pt)

b) Find the number of hours that only 10% of the bulbs live longer than. (2pts.)

- 5) The length of time for one individual to be served at a cafeteria is a random variable having an exponential distribution with a mean of 4 minutes.
- a) What is the probability that a person is served in less than 3 minutes? (2pts.)

 X has pdf $f(x) = \frac{1}{4}e^{-x/4}$; x > 0 when X = Seuratime. $P(X < 3) = \int_{4}^{3} \frac{1}{4}e^{-x/4} dx = -e^{-x/4} \Big|_{0}^{3} = 1 e^{-3/4}$ = 0.5276 (1pt)