King Fahd University of Petroleum & Minerals Department of Math. & Stat.

Math 690 - Final Exam (131)

Time: 2 H 30 min

======================================	ID #	
	Problem 1	/15
	Problem 2	/5
	$\begin{array}{c} \\ \text{Problem } 3 \end{array}$	/15
	Problem 4	/10
	${\text{Problem 5}}$	/5
	Total	/50

Problem # 1. (15 marks) Let Ω be a bounded and smooth domain of \mathbb{R}^4 and $f \in L^p(\Omega), p > 2$. Consider the problem

(P)
$$\begin{cases} -\Delta u + u = f, & \text{in } \Omega\\ u = 0, & \text{on } \partial \Omega \end{cases}$$

i) Show that (P) has a unique weak solution $u \in H_0^1(\Omega) \cap H^2(\Omega)$. ii) Show that $u \in W^{1,4}(\Omega)$

iii) Show that $u \in L^p(\Omega)$ and $||u||_p \leq ||f||_p$ *iv)* If $f \in L^{\infty}(\Omega)$, show that $u \in L^{\infty}(\Omega)$

Hint: Remember that if $v \in L^{q}(\Omega)$, $\forall q \geq 1$, with $||v||_{q} \leq C$, $\forall q \geq 1$ and Ω is bounded then $v \in L^{\infty}(\Omega)$.

Problem # 2. (5 marks) Let Ω be a bounded and smooth domain of \mathbb{R}^N and $f \in L^2(\Omega)$. Consider the problem

$$(P_1) \qquad \begin{cases} -\Delta u = f, & \text{in } \Omega\\ u = 1, & \text{on } \partial \Omega \end{cases}$$

i) Find the problem satisfied by v = u - 1

ii) Show that (P_1) has a unique weak solution $u \in H^2(\Omega)$ and give a weak formulation

Problem # 3. (15 marks)

Let Ω be a bounded and smooth domain of \mathbb{R}^N and $f, g \in L^2(\Omega)$. Given the problem

(*)
$$\begin{cases} -\Delta u - v + \int_{\Omega} u = f & \text{in } \Omega \\ -\Delta v + v + 2u = g & \text{in } \Omega \\ u = \frac{\partial v}{\partial \eta} = 0 & \text{on } \partial \Omega \end{cases}$$

i) Give a weak formulation to (*)

ii) Show (*) has a unique weak solution $(u, v) \in (H_0^1(\Omega) \cap H^2(\Omega)) \times H^2(\Omega)$ *iii*) If f = g, show that $u - v \in H^4(\Omega)$

Problem 4 (10 marks)

Let Ω be a bounded and smooth domain of \mathbb{R}^N and $f \in L^2(\Omega)$. Given the problem

$$(**) \qquad \begin{cases} \Delta^2 u = f & \text{in } \Omega\\ u = \Delta u = 0 & \text{on } \partial \Omega \end{cases}$$

Show that (**) has a unique weak solution $u \in H_0^1(\Omega) \cap H^4(\Omega)$ Hint: You may take of $v = -\Delta u$

Problem 5 (5 marks)

Let Ω be a bounded and smooth domain of \mathbb{R}^N and $f \in L^2(\Omega)$. Use the maximum principle to show that

$$(***) \qquad \begin{cases} -\Delta u + u = f & \text{in } \Omega\\ u = g & \text{on } \partial \Omega \end{cases}$$

has at most one weak solution $u \in H^1(\Omega) \cap C(\overline{\Omega})$, where g is $C(\partial \Omega)$.