Exam II- Math 572- Term 131-gOoD lUcK

Name:

Q 1: Let
$$f(x) := \begin{cases} \sin(x): & x < 0, \\ \cos(x): & x > 0. \end{cases}$$

a) Prove that f is a distribution.

b) Find f' in the sense of distribution.

 ${\bf Q}$ 2: Consider the Dirichlet/Neumann problem:

$$-u''(x) + (1+x)u(x) = 1, \quad in \quad D'(0,1),$$

$$u(0) = 0, \quad u'(1) = 0. \tag{1}$$

a) Use the Lax-Milgram Theorem to show there exists a unique solution $u \in H^1(0, 1)$.

b) Show that $u \in H^3(0, 1)$.

Q 3: Define the bilinear form l^1

$$a(u,w) = \int_0^1 \left[u'(x)w'(x) + xu'(x)w(x) + u(x)w(x) \right] dx$$

on $H_0^1(0,1)$. Show that $a(\cdot,\cdot)$ is coercive.

 ${\bf Q}$ 4: Consider the following BVP:

$$-u''(x) = 1, \quad in \quad \Omega = (0, 1), u(0) = \alpha, \quad u'(1) = \beta,$$
(2)

where α and β are some given, real constants.

a) Formulate a finite element problem corresponding to the above problem using the hat basis functions.

b) Write the corresponding linear system (AU = b), calculating all integrals involved.

 ${\bf Q}~{\bf 5}:~{\rm Let}$

$$Au := -\Delta u, \quad u \in H^1_0(\Omega), \quad \Omega \subset \mathbb{R}^n.$$

Show that if λ_1 and λ_2 are different eigenvalues of A, then the corresponding eigenfunctions must be orthogonal.

 ${\bf Q}$ 6: Let $f\in L^2(0,1).$ Write a variational formulation for the mixed problem

$$q + u_x = 0,$$
 in $(0, 1),$
 $q_x = f,$ in $(0, 1),$
 $u(0) = u(1) = 0.$

Q 7: Consider the following problem:

$$U'(t) + AU(t) = F(t), \quad t > 0,$$

$$U(0) = V \in \mathbb{R}^{N},$$

where A is an $N \times N$ matrix and F some smooth function. Show that the stability estimate:

$$|U(t)| \le e^{|A|T} \left(|V| + \int_0^T |F(s)| ds \right), \text{ for } 0 \le t \le T,$$

implies the uniqueness of the solution U.