King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

Math 550 - Linear Algebra (Term 131)

Final Exam

Notes:

- Math Students: Solve 6 problems (out of 7).
- Non-Math Students: Solve **5** problems (out of 7).
- Duration = **3 hours**.
- Each problem is worth **20 points**.

(1) Let T be a linear operator on \mathbb{R}^3 which is represented in the standard ordered basis by

the matrix $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

(a) Prove that T has no cyclic vector.

(b) What is the T-cyclic subspace generated by the vector $\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$.

(2) Let n be an integer ≥ 2 and let N be an n \times n matrix over the field F such that Nⁿ = 0 but Nⁿ⁻¹ \ne 0. Prove that N has no square root (i.e., there is no n \times n matrix A such that A² = N).

(3) Let A be an $n \times n$ matrix with real entries such that $A^2 + I = 0$.

(a) Prove n is even.

Let n = 6.

- (b) Give the <u>rational</u> form of A.
- (c) Describe explicitly the <u>cyclic</u> decomposition.

(4) Give all possible Jordan forms for linear operator T with minimal polynomial $x^{2}(x - 1)^{2}$ and characteristic polynomial $x^{3}(x - 1)^{4}$.

(5) Let V be the vector space of the polynomials over \mathbb{R} of degree ≤ 3 , with the inner product $(f|g) = \int_0^1 f(x) g(x) dx$. Let t be a real number, find explicitly $g_t \in V$ such that $(f|g_t) = f(t)$ for all f in V. (Hint: Use Theorem 6 of Section 8.3)

(6) Let V be a finite-dimensional inner product space. For each α, β in V, let $T_{\alpha,\beta}$ be the linear operator on V defined by $T_{\alpha,\beta}(\gamma) = (\gamma|\beta)\alpha$. Show that

- (a) $T^*_{\alpha,\beta} = T_{\beta,\alpha}$
- (b) Trace($T_{\alpha,\beta}$) = ($\alpha|\beta$)
- (c) $T_{\alpha,\beta}T_{\gamma,\delta} = T_{\alpha,(\beta|\gamma)\delta}$
- (d) Under what conditions is $T_{\alpha,\beta}$ self-adjoint?

(7) Let f and g be bilinear forms on a finite dimensional vector space V. Suppose that g is <u>non-singular</u>.

(a) Show that there exist unique linear operators T_1 and T_2 on V such that:

 $f(\alpha, \beta) = g(T_1\alpha, \beta) = g(\alpha, T_2\beta)$ for all α, β .

(Hint: For a bilinear form φ use: $\varphi(\alpha, \beta) = X^t A Y$ where $[\varphi] = A, [\alpha] = X, [\beta] = Y$)

(b) Explain why (a) is not true if g is singular.

----- Good Luck ------