King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

Math 550 – Linear Algebra (Term 131)

Midterm Exam

Notes:

- Math Students: Solve **5** problems. Duration = **3 hours**.
- Non-Math Students: Solve **3** problems. Duration = **2 hours**.
- Each student should solve either (3-1) or (3-2).
- Each problem is worth **20 points**.

(1) Let T be the linear operator on \mathbf{R}^2 defined by:

$$T(x,y) = (-y,x)$$

- (a) What is the matrix of T in the standard ordered basis for \mathbf{R}^2 ?
- (b) What is the matrix of T in the ordered basis $B = \{\alpha, \beta\}$, where $\alpha = (1, 2)$ and $\beta = (1, -1)$.
- (c) Prove that for every real number c the operator (T cI) is invertible.
- (d) Prove that if B is any ordered basis for \mathbf{R}^2 and $[T]_B = A$, then $A_{12}A_{21} \neq 0$.

(2) Let

$$A = \begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{bmatrix}$$

- (a) Is A similar over the field \mathbb{R} to a diagonal matrix?
- (b) Is A similar over the field $\mathbb C$ to a diagonal matrix?

(3-1) Let V be the vector space of continuous real-valued functions on the interval [-1, 1] of the real line. Let W_e be the subspace of even functions, f(-x) = f(x), and let W_o be the subspace of odd functions, f(-x) = -f(x). Let T be the indefinite integral operator

$$Tf(x) = \int_0^x f(t)dt$$

- (a) Show that $V = W_e \oplus W_o$.
- **(b)** Is W_e invariant under T?
- (c) Is W_o invariant under T?

(3-2) Let V be the vector space of $n \times n$ matrices over the field F.

- (a) If B is a fixed $n \times n$ matrix, define a function f_B on V by $f_B(A) = trace(BA)$. show that f_B is a linear functional on V.
- (b) Show that every linear functional on V is of the above form, i.e., is f_B for some B.
- (c) Show that $B \rightarrow f_B$ is an isomorphism of V onto V^{*}.

(4) Let V be the space of $n \times n$ matrices over **F**, A a fixed $n \times n$ matrix over **F**, and T the linear operators on V defined by:

T(B) = AB

- (a) Is it true that A and T have the same characteristic values?
- (b) Show that the minimal polynomial for T is the minimal polynomial for A.
- (c) True or False? If A is diagonalizable (over F), then T is diagonalizable.

(5) Let V be the space of $n \times n$ matrices over F, A a fixed $n \times n$ matrix over F, and T the linear operator on V defined by:

$$T_A(B) = AB - BA.$$

- (a) True or False? If A is diagonalizable (over \mathbf{F}), then T_A is diagonalizable.
- (b) Consider the family of linear operators T_A obtained by letting A vary over all diagonal matrices. Prove that the operators in that family are *simultaneously* diagonalizable.
- (c) Prove that if A is a nilpotent matrix, then T_A is a nilpotent operator.

----- Good Luck -----