King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics MATH311 - Advanced Calculus I Exam I – Term 131 (2013–2014)

Exercise 1 (6 points)

State without proof

- 1. the Archimedean property of \mathbb{R} ,
- 2. the Bolzano-Weierstrass Theorem.

Define

- 1. the completeness property of \mathbb{R} ,
- 2. a Cauchy sequence.

Exercise 2 (5 points) Prove that between any two real numbers there is a rational number.

Exercise 3 (5 points)

Let S be a nonempty subset of \mathbb{R} that is bounded above, and let a be any real number in \mathbb{R} . Define the set $a + S = \{a + s : s \in S\}$. Show that

$$\sup(a+S) = a + \sup S.$$

Exercise 4 (6 points)

Let $\{I_n = [a_n, b_n] : n \in \mathbb{N}\}$ be a sequence of closed bounded intervals in \mathbb{R} that is nested; i.e., $I_{n+1} \subset I_n$ for all $n \in \mathbb{N}$.

If $\alpha = \sup\{a_n : n \in \mathbb{N}\}\$ and $\beta = \inf\{b_n : n \in \mathbb{N}\}\$, show that

$$\bigcap_{n \ge 1} [a_n, b_n] = [\alpha, \beta]$$

Exercise 5 (5 points)

Prove that if $\lim(x_n) = x$ and if x > 0, then there exists a natural number K such that $x_n > 0$ for all $n \ge K$.

Exercise 6 (7 points) Let $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n}$ for $n \in \mathbb{N}$. 1. Compute x_1 and x_2 .

- -
- 2. Prove that (x_n) is monotone and bounded and hence converges.

Exercise 7(7 points)

- 1. Provide an example of a sequence (x_n) that satisfies $\lim_{n \to \infty} |x_{n+1} x_n| = 0$ but that is not a Cauchy sequence.
- 2. If 0 < r < 1 and $|x_{n+1} x_n| < r^n$ for all $n \in \mathbb{N}$, show that (x_n) is a Cauchy sequence.

Exercise 8 (9 points)

Let 0 < r < 1 and y_1, y_2 be two real numbers such $y_1 < y_2$ and

$$y_n = (1-r)y_{n-1} + ry_{n-2}$$
 for $n > 2$.

Show that the sequence (y_n) is convergent. What is its limit?