KFUPM	Semester 131
Dept. Math. &Stat.	A.Y:2013/2014
Name:	
ID:	

Exercise 1.

Express the following in the form x + iy:

$$\frac{(\sqrt{3}-i)^2(1+i)^5}{(\sqrt{3}+i)^4}$$

[Use polar forms of complex numbers]

Exercise 2.

For a fixed positive integer n, determine the real part of $(1+i\sqrt{3})^n$.

Exercise 3.

Find two complex numbers z_1 and z_2 so that

$$\operatorname{Arg}(z_1 z_2) \neq \operatorname{Arg} z_1 + \operatorname{Arg} z_2.$$

(where Arg(z) is the principal argument of z)

Find two complex numbers z_1 and z_2 so that

$$\operatorname{Arg}(z_1 z_2) = \operatorname{Arg} z_1 + \operatorname{Arg} z_2.$$

Exercise 4.

Let f be the complex function defined for z = x + iy by

$$f(z) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$$

a. Show that Cauchy-Riemann equations are satisfied for $\,f\,$ only at the origin 0 .

Quiz $N^{\circ}5$ Math 302_131 (December 05, 2013)

b. Is f differentiable at 0 ?

Exercise 5. Let f(z) be a complex function defined on \mathbb{C} .

Show that if f(z) and $\overline{f(z)}$ are entire functions, then f(z) is constant.

Quiz N°5 Math 302_131 (December 05, 2013)		