KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 302: FINAL EXAM, SEMESTER (131), JANUARY 06, 2014

Time: 07:00 to 10:00 $\rm pm$

1

 Name
 :

 ID
 :

 Section
 :

Exercise	Points
1	8
2	8
3	8
4	8
5	8
6	22
7	18
8	20
9	22
10	18
Total	140

(Part I): Multiple Choice Questions

In this part, write which of the statements a, b, c or d is true in the answer box provided (only one statement is correct).

Exercise 1 (8 pts). If $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$, then there exists an invertible matrix P

such that $P^{-1}AP$ is equal to

$$(a) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
$$(b) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
$$(c) \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
Ans:

Exercise 2 (8 pts). Let $F(x, y, z) = x^3 \mathbf{i} + x^2 y \mathbf{j} + x^2 z \mathbf{k}$ and S be the surface consisting of the cylinder $(x^2 + y^2 = 4; \ 0 \le z \le 2)$ and the circular diks $(x^2 + y^2 \le 4; \ z = 0)$ and $(x^2 + y^2 \le 4; \ z = 2)$. The flux $\iint_S F.\mathbf{n} \, \mathrm{d}S$ of F across the surface S is equal to

- (a) 45π
- (b) 20π
- (c) 25π
- (d) 40π

Exercise 3 (8 pts). If $z = \frac{1 + i\sqrt{3}}{1 + i}$, then z^{12} is equal to (a) -2^5 (b) -2^6 (c) $i2^5$ (d) $i2^6$ Ans:

Exercise 4 (8 pts). Recall that the if $z \in \mathbb{C} \setminus \{0\}$ and $\alpha \in \mathbb{C}$, then the principal value of the power z^{α} is the complex number $e^{\alpha \operatorname{Ln}(z)}$, where $\operatorname{Ln}(z)$ is the principal logarithm of z.

The principal value of the power $(1 + i\sqrt{3})^i$ is

(a)
$$e^{-\frac{\pi}{3}} (\cos(\log_e 2) + i \sin(\log_e 2))$$

(b) $e^{-\frac{\pi}{6}} (\cos(\log_e 2) + i \sin(\log_e 2))$
(c) $e^{-\frac{\pi}{6}} (\cos(2\log_e 2) + i \sin(2\log_e 2))$
(d) $e^{-\frac{\pi}{3}} (\cos(2\log_e 2) + i \sin(2\log_e 2))$
Ans:

Exercise 5 (8 pts). Let C be the positively oriented circle given by |z - i| = 1. The value of $\oint \frac{e^{z^2}}{z - i} dz$ is

$$(a) \frac{4\pi i}{e}$$

$$(b) \frac{4\pi i}{e^2}$$

$$(c) \frac{2\pi i}{e^2}$$

$$(d) \frac{2\pi i}{e}$$
Ans:

(Part II): Written Questions

Exercise 6 (22 pts).

(a) Find all complex numbers z such that

$$\sin(4z) = \frac{i}{2}\cos(4z).$$

(b) Write

$$\sinh(1+i\frac{\pi}{3}) + \sec(\pi+i)$$

in the form a + ib.

_

Exercise 7 (18 pts). Let $f(z) = |z|^2 + \overline{z}$. We denote by $x = \operatorname{Re}(z)$, $y = \operatorname{Im}(z)$, $u(x, y) = \operatorname{Re}(f(z))$ and $v(x, y) = \operatorname{Im}(f(z))$.

(a) Find all (x, y) at which u, v satisfy Cauchy-Riemann Equations.

(b) Is f(z) differentiable at $z_0 = -1$? Why?

Exercise 8 (20 pts). Using Cauchy integral formulas, evaluate the contour integral

$$\oint_{\mathcal{C}} \left[\frac{\cosh(z)}{z^3} - \frac{\sin^2 z}{(2z-\pi)^3} + \frac{e^z}{z-3} \right] \, \mathrm{d}z,$$

where C is the positively oriented circle |z| = 2.

Exercise 9 (22 pts). Let $f(z) = \frac{z^3 - 4z^2 + 5z}{z^2 - 4z + 3}$.

(a) Find the Laurent series of the function f(z) about $z_0 = 1$ in the region 0 < |z - 1| < 2.

(b) Use (a) to evaluate the contour integral

$$I = \oint_{\mathcal{C}} f(z) \, \mathrm{d}z,$$

where C is the positively oriented circle $|z - \frac{3}{2}| = 1$.

Exercise 10 (18 pts). Consider the function $f(z) = \frac{e^{iz} + \cos(z)}{z(z-\pi)^2}$. (a) Find $\operatorname{Res}(f(z), 0)$ and $\operatorname{Res}(f(z), \pi)$.

(b) Use (a) to evaluate $\oint_{\mathcal{C}} f(z) dz$ where \mathcal{C} is the positively oriented circle |z - 3| = 1.