KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 302: EXAM I, SEMESTER (131), OCTOBER 05, 2013

Time: $08{:}00$ to $09{:}30~\mathrm{am}$

Name :

ID : Section :

Exercise	Points			
1	20			
2	20			
3	20			
4	20			
5	20			
Total	100			

Exercise 1.

 (\mathbf{i}) Find a basis and the dimension of the subspace

$$S = \{ (x, y, z, t) \in \mathbb{R}^4 \mid 2x - y = 0 \text{ and } 3z - t = 0 \}$$

of \mathbb{R}^4 .

(ii) Let $E = \{(x, y) \in \mathbb{R}^2 \mid x^2 - y^2 = xy\}$. Determine whether E is a subspace of \mathbb{R}^2 .

Exercise 2. Consider the nonhomogeneous system given by:

	x_1	+	$2x_2$	+	$3x_3$	= 1
(*)	$4x_1$	+	$5x_2$	+	$6x_3$	= 1
	$7x_1$	+	$8x_2$	+	$9x_3$	= 1

(a) Write the matrix form of the system.

(b) Find the reduced echelon form of the augmented matrix of the system.

 (\mathbf{c}) Solve the system. Does it have a unique solution?

Exercise 3. Let *a* be a real number. Consider the system AX = B, where

$$A = \begin{pmatrix} 1 & -2 & 3 & 4 \\ 1 & 4 & 6 & 8 \\ 0 & 1 & 0 & 0 \\ 2 & 5 & 6 & 8 \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \text{ and } B = \begin{pmatrix} 1 \\ 6 \\ 5 \\ a \end{pmatrix}$$

(i) Find rank(A) and rank([A:B]).

(ii) Find the value of a such that the system AX = B is consistent.

Exercise 4. Let $A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 0 & -1 \\ 1 & 2 & -1 \end{pmatrix}$. (i) Use Gauss-Jordan Elimination to find A^{-1} .

(ii) Use A^{-1} obtained in (i) to solve the following system:

 $\begin{cases} 2x_1 - x_2 + x_3 = 4\\ 3x_1 - x_3 = 8\\ x_1 + 2x_2 - x_3 = -16 \end{cases}$

Exercise 5. Let $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & -3 \\ 3 & -3 & -3 \end{pmatrix}$.

(i) Explain briefly why A is diagonalizable.

(ii) Show that

$$\det(\lambda I_3 - A) = (\lambda + 6)(\lambda - 2)(\lambda - 3).$$

(iii) Find an orthogonal matrix P that diagonalizes A and find the matrix $P^{-1}AP$.