Name: ID #:	Section $\#$:
-------------	----------------

- (1) Determine which of the following sets are *subspace* of \mathbb{R}^3 . Justify your answer.
 - (a) The set of all vectors of the form $\langle a, 1, 1 \rangle$.
 - (b) $V = \{ \langle x, y, z \rangle \mid 2x + y z = 0 \}.$
 - (c) The set of all vectors of the form $\langle 0, b, 0 \rangle$.
 - (d) The set of all vectors of the form $\langle a, b, c \rangle$, where a + b + c = 1.

- (2) The set $B = \{u_1, u_2, u_3\}$, where $u_1 = \langle 1, 1, 1 \rangle$, $u_2 = \langle 0, 1, 1 \rangle$ and $u_3 = \langle 0, 0, 1 \rangle$ is a **basis** for \mathbb{R}^3 .
 - (a) Show that B is *linearly independent*.
 - (b) Express the vector $\langle 2, -5, 7 \rangle$ as a *linear combination* of u_1, u_2, u_3 .

(3) Let V be the set of all vectors on the xz-plane (in \mathbb{R}^3). Show that the set $\{u_1, u_2\}$, where $u_1 = \langle 1, 0, 1 \rangle$, $u_2 = \langle 1, 0, 0 \rangle$ **spans** the vector space V. What is the **dimension** of V? (Justify your answer)