Tutorial 3

- Prove that $4^n > n^3$ for every positive integer n.
- A sequence $\{a_n\}$ is defined recursively by $a_1 = 1$, $a_2 = 2$ and $a_n = a_{n-1} + 2a_{n-2}$ for $n \ge 3$. Conjecture a formula for a_n and verify that your conjecture is correct.
- Let H be a nonempty subset of **Z**. Suppose that the relation R defined on **Z** by a R b if $a b \in H$ is an equivalence relation. Verify the following
 - (a) $0 \in H$.
 - (b) If $a \in H$, then $-a \in H$.
 - (c) If $a, b \in H$, then $a + b \in H$.
- Prove that the multiplication in \mathbb{Z}_n , $n \geq 2$, defined by [a][b] = [ab] is well-defined.

5