Tutorial 2

- Consider the open sentences P(n): 5n + 3 is prime, and Q(n): 7n + 1 is prime, both over the domain N
 - (a) State $P(n) \Rightarrow Q(n)$ in words.
 - (b) State $P(2) \Rightarrow Q(2)$ in words. Is this statement true or false?
 - (c) State $P(6) \Rightarrow Q(6)$ in words. Is this statement true or false?
- For statements P and Q, show that $(\sim Q) \Rightarrow (P \land (\sim P))$ and Q are logically equivalent.
- For which biconditional is its negation the following? n^3 and 7n + 2 are odd or n^3 and 7n + 2 are even.
- Let P(x) and Q(x) be open sentences where the domain of the variable x is S. Which of the following implies that $(\sim P(x)) \Rightarrow Q(x)$ is false for some $x \in S$?
 - (a) $P(x) \wedge Q(x)$ is false for all $x \in S$.
 - (b) P(x) is true for all $x \in S$.
 - (c) Q(x) is true for all $x \in S$.
 - (d) $P(x) \vee Q(x)$ is false for some $x \in S$.
 - (e) $P(x) \wedge (\sim Q(x))$ is false for all $x \in S$.
- Prove that if a, b and c are odd integers such that a + b + c = 0, then abc < 0. (You are permitted to use well-known properties of integers here.)
- Prove that if x is an odd integer, then 9x + 5 is even.
- Let $x \in \mathbb{Z}$. Prove that if 2^{2x} is an odd integer, then 2^{-2x} is an odd integer.
- Let $S = \{1, 5, 9\}$. Prove that if $n \in S$ and $\frac{n^2+n-6}{2}$ is odd, then $\frac{2n^3+3n^2+n}{6}$ is even.