Tutorial 1 - Let $A = \{n \in \mathbb{Z} : 2 \le |n| < 4\}, B = \{x \in \mathbb{Q} : 2 < x \le 4\},\ C = \{x \in \mathbb{R} : x^2 (2 + \sqrt{2})x + 2\sqrt{2} = 0\} \text{ and } D = \{x \in \mathbb{Q} : x^2 (2 + \sqrt{2})x + 2\sqrt{2} = 0\}.$ - (a) Describe the set A by listing its elements. - (b) Give an example of three elements that belong to B but do not belong to A. - (c) Describe the set C by listing its elements. - (d) Describe the set D in another manner. - (e) Determine the cardinality of each of the sets A, C and D. - For $A = \{x : x = 0 \text{ or } x \in \mathcal{P}(\{0\})\}$, determine $\mathcal{P}(A)$. - Give an example of two subsets A and B of $\{1, 2, 3\}$ such that all of the following sets are different: $A \cup B$, $A \cup B$, $\overline{A} \cup B$, $\overline{A} \cup B$, $\overline{A} \cap B$, $\overline{A} \cap B$, $\overline{A} \cap B$. - For $r \in \mathbb{R}^+$, let $A_r = \{x \in \mathbb{R} : |x| < r\}$. Determine $\bigcup_{r \in \mathbb{R}^+} A_r$ and $\bigcap_{r \in \mathbb{R}^+} A_r$. - Give an example of three sets A, S_1 and S_2 such that S_1 is a partition of A, S_2 is a partition of S_1 and $|S_2| < |S_1| < |A|$. - For $A = \{a \in \mathbb{R} : |a| \le 1\}$ and $B = \{b \in \mathbb{R} : |b| = 1\}$, give a geometric description of the points in the xy-plane belonging to $(A \times B) \cup (B \times A)$. - 7 Let I denote the interval $[0, \infty)$. For each $r \in I$, define $$A_r = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x^2 + y^2 = r^2\}$$ $$B_r = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x^2 + y^2 \le r^2\}$$ $$C_r = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x^2 + y^2 > r^2\}$$ - (a) Determine $\bigcup_{r \in I} A_r$ and $\bigcap_{r \in I} A_r$. - (b) Determine $\bigcup_{r \in I} B_r$ and $\bigcap_{r \in I} B_r$. - (c) Determine $\bigcup_{r \in I} C_r$ and $\bigcap_{r \in I} C_r$. - Give an example of a set $A = \{1, 2, ..., k\}$ for a smallest $k \in \mathbb{N}$ containing subsets A_1, A_2, A_3 such that $|A_i A_j| = |A_j A_i| = |i j|$ for every two integers i and j with $1 \le i < j \le 3$. - For the open sentence P(A): $A \subseteq \{1, 2, 3\}$ over the domain $S = \mathcal{P}(\{1, 2, 4\})$, determine: - (a) all $A \in S$ for which P(A) is true. - (b) all $A \in S$ for which P(A) is false. - (c) all $A \in S$ for which $A \cap \{1, 2, 3\} = \emptyset$. - State the negation of each of the following statements. - (a) At least two of my library books are overdue. - (b) One of my two friends misplaced his homework assignment. - (c) No one expected that to happen. - (d) It's not often that my instructor teaches that course. - (e) It's surprising that two students received the same exam score.