Tutorial 1

- Let $A = \{n \in \mathbb{Z} : 2 \le |n| < 4\}, B = \{x \in \mathbb{Q} : 2 < x \le 4\},\ C = \{x \in \mathbb{R} : x^2 (2 + \sqrt{2})x + 2\sqrt{2} = 0\} \text{ and } D = \{x \in \mathbb{Q} : x^2 (2 + \sqrt{2})x + 2\sqrt{2} = 0\}.$
 - (a) Describe the set A by listing its elements.
 - (b) Give an example of three elements that belong to B but do not belong to A.
 - (c) Describe the set C by listing its elements.
 - (d) Describe the set D in another manner.
 - (e) Determine the cardinality of each of the sets A, C and D.
- For $A = \{x : x = 0 \text{ or } x \in \mathcal{P}(\{0\})\}$, determine $\mathcal{P}(A)$.
- Give an example of two subsets A and B of $\{1, 2, 3\}$ such that all of the following sets are different: $A \cup B$, $A \cup B$, $\overline{A} \cup B$, $\overline{A} \cup B$, $\overline{A} \cap B$, $\overline{A} \cap B$, $\overline{A} \cap B$.
- For $r \in \mathbb{R}^+$, let $A_r = \{x \in \mathbb{R} : |x| < r\}$. Determine $\bigcup_{r \in \mathbb{R}^+} A_r$ and $\bigcap_{r \in \mathbb{R}^+} A_r$.
- Give an example of three sets A, S_1 and S_2 such that S_1 is a partition of A, S_2 is a partition of S_1 and $|S_2| < |S_1| < |A|$.
- For $A = \{a \in \mathbb{R} : |a| \le 1\}$ and $B = \{b \in \mathbb{R} : |b| = 1\}$, give a geometric description of the points in the xy-plane belonging to $(A \times B) \cup (B \times A)$.
- 7 Let I denote the interval $[0, \infty)$. For each $r \in I$, define

$$A_r = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x^2 + y^2 = r^2\}$$

$$B_r = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x^2 + y^2 \le r^2\}$$

$$C_r = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x^2 + y^2 > r^2\}$$

- (a) Determine $\bigcup_{r \in I} A_r$ and $\bigcap_{r \in I} A_r$.
- (b) Determine $\bigcup_{r \in I} B_r$ and $\bigcap_{r \in I} B_r$.
- (c) Determine $\bigcup_{r \in I} C_r$ and $\bigcap_{r \in I} C_r$.
- Give an example of a set $A = \{1, 2, ..., k\}$ for a smallest $k \in \mathbb{N}$ containing subsets A_1, A_2, A_3 such that $|A_i A_j| = |A_j A_i| = |i j|$ for every two integers i and j with $1 \le i < j \le 3$.
- For the open sentence P(A): $A \subseteq \{1, 2, 3\}$ over the domain $S = \mathcal{P}(\{1, 2, 4\})$, determine:
 - (a) all $A \in S$ for which P(A) is true.
 - (b) all $A \in S$ for which P(A) is false.
 - (c) all $A \in S$ for which $A \cap \{1, 2, 3\} = \emptyset$.
- State the negation of each of the following statements.
 - (a) At least two of my library books are overdue.
 - (b) One of my two friends misplaced his homework assignment.
 - (c) No one expected that to happen.
 - (d) It's not often that my instructor teaches that course.
 - (e) It's surprising that two students received the same exam score.