KFUPM, Department of Mathematics and Statistics Term 131, Math 232, Final Exam Date: Thursday January 2, 2014 Time Allowed: 180 minutes

Name:	
ID:	
Section:	
Serial #:	

Question	Points	Out of
1		20
2		20
3		20
4		20
5		20
6		25
7		25
8		25
9		25
Total		200-+

- 1) Answer in the space provided. You may use the back of the page if necessary.
- 2) Write clearly and neatly.
- 3) Please show your work or explain your solutions.
- 4) No credit will be given for incorrect steps nor will credit be given for correct solutions arrived at which by incorrect means.

Question 1: Let *P*, *Q* and *R* be statements. Without constructing a truth table, show that $x_1(P \Leftrightarrow Q) = \left[(P \lor Q) \land x_2(P \land Q) \right]$

that
$$\sim (P \Leftrightarrow Q) \equiv \lfloor (P \lor Q) \land \sim (P \land Q) \rfloor$$

Question 2: Let A be a nonempty set and let B be a fixed subset of A. A relation R is defined on $\mathcal{P}(A)$ by X R Y if $X \cap B = Y \cap B$.

- (a) Prove that R is an equivalence relation.
- (b) Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{1, 3, 4\}$. For $X = \{2, 3, 4\}$, determine [X].

Question 3: For a function $f : A \rightarrow B$ and subsets C and D of A and E and F of

- B, prove that
 - (a) $f(C \cup D) = f(C) \cup f(D)$
 - (b) $f^{-1}(E-F) = f^{-1}(E) f^{-1}(F)$.

Question 4: Show that the interval (-1,1) is uncountable.

[Hint: Consider the function $f:(-1,1) \rightarrow \mathbf{R}$ defined by $f(x) = \frac{x}{1-x^2}$]

Question 5: Let A be a set. Prove that $|A| \leq \mathcal{P}(A)|$.

Question 6:

- (a) Use the Euclidean Algorithm to find the greatest common divisor for the two integers 1425 and 1994.
- (b) Determine integers x and y such that gcd(1425,1994) = 1425x + 1994y

Question 7:

- (a) Let $a, b, c \in \mathbb{Z}$, where a and b are relatively prime nonzero integers. If a | c and b | c, then ab | c.
- (b) Let $a, b, m, n \in \mathbb{Z}$, where $n, m \ge 2$. If $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, where gcd(m, n) = 1, then $a \equiv b \pmod{mn}$.

Question 8:

(a) Prove that
$$\lim_{n \to \infty} \frac{3n}{6n+4} = \frac{1}{2}$$
.
(b) Prove that the infinite series $\sum_{n=1}^{\infty} \frac{3}{9n^2 + 3n - 2}$ converges and find its sum.

Question 9: Give an $\epsilon - \delta$ proof that

(a)
$$\lim_{x \to 4} \frac{x^2 - 2x - 8}{x^2 - 10x + 24} = -3 ,$$

(b) If
$$\lim_{x \to a} f(x) = L$$
 and $\lim_{x \to a} g(x) = M$, then $\lim_{x \to a} f(x) \cdot g(x) = LM$.