KFUPM, Department of Mathematics and Statistics Term 131, Math 232, Exam 2 Date: Monday December 9, 2013 Time Allowed: 120 minutes

Name:	
ID:	
Section:	
Serial #:	

Please Show your work

Question	Points	Out of
1		16
2		12
3		12
4		16
5		16
6		16
7		12
Total		100

Question 1: State and prove The Principle of Mathematical Induction.

Question 2: Use the Principle of Mathematical Induction to prove that for every positive integer n,

$$1 \cdot 3 \cdot 5 \cdots (2n-1) = \frac{(2n)!}{2^n \cdot n!}$$

Question 3: Use the Strong Principle of Mathematical Induction to prove that for each integer $n \ge 12$, there are nonnegative integers a and b such that n = 3a + 7b.

Question 4: Consider the subset $H = \{ [3k] : k \in \mathbb{Z} \}$ of \mathbb{Z}_{12} .

- (a) Determine the distinct elements of H and construct an addition table for H.
- (b) A relation R on \mathbb{Z}_{12} is defined by [a]R[b] if $[a-b] \in H$. Show that R is an equivalence relation and determine the distinct equivalence classes.

Question 5: The function $f : \mathbf{R} \to \mathbf{R}$ is defined by

$$f(x) = \begin{cases} (x-1)^2 & \text{if } x \le 1 \\ \frac{1}{1-x} & \text{if } x > 1. \end{cases}$$

(a) Show that f is a bijection.

(b) Determine the inverse f^{-1} of f .

Question 6: For nonempty sets A and B and $f : A \rightarrow B$ and $g : B \rightarrow A$, suppose that

 $g \circ f = i_A$

- (a) Prove that f is one-to-one and g is onto.
- (b) Prove that if f is onto, then g is one-to-one.

Question 7: Let

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}, \ \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix} \text{ be permutations } \mathcal{S}_n.$$

Find $x \in S_n$ such that $x \circ \alpha = \beta$.