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Question 1: State and prove The Principle of Mathematical Induction. 
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Question 2: Use the Principle of Mathematical Induction to prove that for every positive 

integer ,n  
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Question 3: Use the Strong Principle of Mathematical Induction to prove that for each 

integer 12,n   there are nonnegative integers a  and b  such that 3 7 .n a b    
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Question 4: Consider the subset {[3 ]: }kH k Z  of 12.Z    

(a)  Determine the distinct elements of H  and construct an addition table for .H   

(b)  A relation R  on 12Z  is defined by [ ] [ ]a R b  if [ .]a Hb   Show that R  is an 

equivalence relation and determine the distinct equivalence classes.   
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Question 5: The function :f R R  is defined by 

2( 1) if  1

( ) 1
if  1.
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(a)  Show that f is a bijection. 

(b)  Determine the inverse 1f   of .f   
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Question 6: For nonempty sets A  and B  and :f A B  and ,:g B A  suppose that 

Ag f i  

(a)  Prove that f is one-to-one and g is onto. 

(b)  Prove that if f is onto, then g  is one-to-one. 
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Question 7: Let  
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  be permutations .n   

Find n  such that .    


