KFUPM, Department of Mathematics and Statistics Term 131, Math 232, Exam 1 Date: Saturday October 26, 2013

Time Allowed: 120 minutes

Name:	[
ID:	-
Section:	-
Serial #:	-
	_

Question	Points	Out of
1		12
2		10
3		12
4		12
5		12
6		16
7		14
8		12
Total		100

Please Show your work

Question 1: Mark the correct sentence as (TRUE) and the incorrect sentence as (FALSE).

- (a) The set $S = \{X_i : X_i = \{(i, i^2), (i, (i-1)^2)\}, i = 1, 2\}$ is **NOT** a partition of the set $A \times B$ where $A = \{-1, 2\}$ and $B = \{1, 4\}$.
- (b) Let A and B be two sets such that $A \subset B$. Then there is **NO** set in $\mathcal{P}(B)$ that is disjoint from A.
- (c) $[(P \land Q) \Rightarrow (\sim R)] \equiv (\sim P) \lor (\sim Q) \lor (\sim R)$ (You can do this without a truth table)
- (d) Let $x, y \in \mathbb{Z}$. Then the contrapositive of the implication: "If $(x^2 + 1)y$ is even, then x is odd or y is even" is "If x is even or y is odd, then $(x^2 + 1)y$ is odd".
- (e) If every month consists of 40 days, then every week consists of 7 days.
- (f) Let *S* be some domain. To prove the statement $\forall x \in S, P(x) \Rightarrow Q(x)$ by contradiction we prove that $\exists x \in S, \sim [(\sim Q(x)) \Rightarrow (\sim P(x)))]$.

Question 2:

(a) If $\bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} A_{\alpha}$ for some indexed collection of sets $\{A_{\alpha}\}_{\alpha \in I}$ with and indexed

set I . What can you say about the relationship between the sets $A_{\scriptscriptstyle \alpha}$.

(b) Let $n \in \mathbb{N}$, and define the sets $A_n = \{0, \pm 1, \pm 2, \dots, \pm n\}$. Then

(i)
$$\bigcap_{i \in \mathbb{N}} A_i =$$

(ii)
$$\bigcup_{i \in \mathbb{N}} A_i =$$

Question 3: Show whether the following statement is a tautology or not.

$$[(P \land R) \Rightarrow Q] \Leftrightarrow [P \Rightarrow (R \Rightarrow Q)]$$

Question 4:

- (a) Each of the following describes an implication. Write the implication in the form "if, then."
 - (i) Any point on the straight line with equation 2y + x 3 = 0 whose x -coordinate is an integer also has an integer for its y -coordinate.

(ii) Let $n \in \mathbb{Z}$. Whenever 3n + 7 is even, n is odd.

- (iii) For an integer to be odd, it is sufficient that its square be odd.
- (iv) A matrix A is invertible only if $\det A \neq 0$.
- (b) For the open sentences P(x): |x + 1| < 2 and $Q(x): x \in (-3,1)$ over the domain **R**. State the biconditional $P(x) \Leftrightarrow Q(x)$ in two ways: one using "if and only if" and the other using "necessary and sufficient".

Question 5: Let A and B be two sets. Then

(a) Prove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

(b) Disprove that $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.

Question 6:

(a) For an integer x, prove that $3|x^2$ if and only if 3|x.

(b) Prove that $\sqrt{3}$ is an irrational number.

Question 7: Let x be a positive real number. Prove that if $x - \frac{2}{x} > 1$, then x > 2 by

(a) a proof by contrapositive.

(b) a proof by contradiction

Question 8:

(a) Prove that there is no integer *n* such that $n \equiv 5 \pmod{14}$ and $n \equiv 3 \pmod{21}$.

(b) Evaluate the proposed proof of the following result.

Result:

If x is an irrational number and y is a rational number, then z = x - y is irrational.

Proof:

Assume, to the contrary, that z = x - y is rational. Then $z = \frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$. Since $\sqrt{3}$ is irrational, we let $x = \sqrt{3}$. Since y is rational, $y = \frac{c}{d}$, for some integers c, d with $d \neq 0$. Therefore,

$$\sqrt{3} = x = y + z = \frac{c}{d} + \frac{a}{b} = \frac{ad + bc}{bd}$$

Since ad + bc and bd are integers, where $db \neq 0$, it follows that $\sqrt{3}$ is rational, producing a contradiction.