1. (12 points) Determine two linearly independent power series solutions of the differential equation y'' - 2xy' - 4y = 0 about the ordinary point x = 0. (Write only first four terms of each solution). Hence write the general solution of the differential equation.

2. (10 points) Determine the singular points of the differential equation $2x(x-2)^2y'' + 3xy' + (x-2)y = 0$ and classify them as regular or irregular.

3. (12 points) Solve the system

$$X'(t) = \begin{pmatrix} -1 & 0 & 0 \\ 3 & -1 & 0 \\ 4 & 2 & -1 \end{pmatrix} X(t)$$

4. (12 points) Solve the initial value problem

$$X' = \begin{pmatrix} -3 & -2 \\ 4 & 1 \end{pmatrix} X, \qquad X(0) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

5. (12 points) Let $X_1 = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}$ and $X_2 = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$ be solutions of the system X' = AX, for some 2×2 matrix A.

Use variation of parameters to solve the system

$$X' = AX + \left(\begin{array}{c} 0\\ \sec t \end{array}\right).$$

6. (12 points) Use matrix exponential method to solve the initial value problem

$$X' = \begin{bmatrix} 2 & -3 & 2 \\ 0 & 0 & 0 \\ -2 & 5 & -2 \end{bmatrix} X, \qquad X(1) = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}.$$

7. (7 points) Using the existence and uniqueness theorem, the initial value problem

$$\frac{dy}{dx} = \sqrt{y - x}, \ y(x_0) = y_0$$

is guaranteed to have a unique solution if $(x_0, y_0) =$

- a) (0,1)
- b) (0,0)
- c) (2,2)
- d) (3,0)
- e) (-1, -2)
- 8. (7 points) The solution of the differential equation

$$y\cos y\frac{dy}{dx} = x(2\ln x + 1) - \sin y\frac{dy}{dx}$$

is

- a) $y \sin y = x^2 \ln x + c$
- b) $y\cos y = x^2 \ln x + c$
- c) $y^2 \sin y = x \ln x + c$
- $d) y^2 \cos x = x \ln y + c$
- e) $y^2 \cos y = x \ln y + c$

9. (7 points) The general solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = \sin x$ is:

a)
$$x(y + \cos x) = \sin x + c$$

b)
$$x(y + \cos x) = \cos x + c$$

c)
$$x(y - \cos x) = \sin x + c$$

$$d) x(y - \sin x) = \cos x + c$$

e)
$$x(y + \cos x) = \sin^{-1} x + c$$

10. (7 points) A possible integration factor that will make the ordinary differential equation

$$(y^2 + e^y) dx + (2y + e^y) \tan x dy = 0, \quad 0 < x < \frac{\pi}{2}$$

exact equation is

a)
$$\mu(x) = \cos x$$

b)
$$\mu(y) = \sin y$$

c)
$$\mu(x) = x^2 \sin x$$

d)
$$\mu(y) = e^y \sin y$$

e)
$$\mu(x) = e^x + x$$

11. (7 points) The solution of $\frac{dy}{dx} = 1 + e^{y-x+5}$, is given by:

a)
$$y = x - 5 - \ln(c - x)$$

b)
$$y = -x - 5 - \ln(c - x)$$

c)
$$y = y^2 - x + e^5 + c$$

d)
$$y = x + e^{y - \frac{x^2}{2} + 5} + c$$

e)
$$y = \ln(y - x + 5 + c)$$

12. (7 points) Given that $y_p = ax^2 + bx$ is a particular solution of the differential equation $2x^2y'' + 5xy' + y = x^2 - x$. Then 15a + 6b =

- a) 0
- b) 1
- c) 2
- d) 3
- e) 4

13. (7 points) Given that the general solution of the differential equation $xy'' - y' + 4x^3y = 0$ is $y(x) = Ay_1(x) + By_2(x)$ with $y_1(x) = \sin(x^2)$. Then

a)
$$y(0) = \frac{-B}{2}$$

b)
$$y(0) = A + B$$

c)
$$y(0) = \frac{A}{2}$$

$$d) y(0) = \frac{A+B}{2}$$

e)
$$y(0) = -B$$

14. (7 points) Let $f(x) = (x^2 - 1)^2 e^{-2x} + 2x^3 e^x \sin 2x - 6x^2 e^x \cos x$. Which one of the following differential operators is an annihilator of lowest possible order of f?

a)
$$(D+2)^5(D^2-2D+5)^4$$

b)
$$(D+2)^5(D^2-2D+5)^4(D^2-2D+5)^3$$

c)
$$(D^2+2)^2(D^2-2D+5)^3$$

d)
$$(D^2+2)^2(D^2-2D+5)^3(D^2-2D+5)^2$$

e)
$$(D+2)^4(D^2-2D+5)^4$$

15. (7 points) A particular solution for the ordinary differential equation

$$4y'' + 36y = \frac{1}{\sin(3x)}$$

is given by

a)
$$-\frac{1}{12}x\cos(3x) + \frac{1}{36}\sin(3x)\ln|\sin(3x)|$$

b)
$$cos(3x) + sin(3x)$$

c)
$$\frac{1}{4}x\cos(3x) - \frac{1}{9}\ln|\sin(3x)|$$

$$d) x\sin(3x) - \cos(3x) \ln|\sin(3x)|$$

e)
$$-\frac{1}{12}x\cos(3x) + \frac{1}{36}\sin(3x)$$

16. (7 points) The general solution of the differential equation

$$x^2y'' + xy' + 4y = 0$$

is

a)
$$y = c_1 \cos(2 \ln x) + c_2 \sin(2 \ln x)$$

b)
$$y = c_1 x \cos (\ln x) + c_2 x \sin (\ln x)$$

c)
$$y = c_1 x^2 \cos(2 \ln x) + c_2 x^2 \sin(2 \ln x)$$

d)
$$y = c_1 \cos(\sqrt{2} \ln x) + c_2 \sin(\sqrt{2} \ln x)$$

e)
$$y = c_1 x \cos(\sqrt{2} \ln x) + c_2 x \sin(\sqrt{2} \ln x)$$