King Fahd University of Petroleum and Minerals

	MATH 201	QUIZ	#2	Term 131	Dr. A. Khalfallah
Name:					ID:
Q1. Find (a) $\lim_{(x,y)\to(0, \infty)}$	$(y,0) \frac{\sin(x^2 + y^2)}{x^2 + y^2}$			(b) lim _{(x,y)→(0}	$(y,0) \frac{x^4 - y^2}{x^4 + y^2}$
Q2 Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ if z	$=e^r\cos heta$, r	$r = st, \theta$	$\theta = \sqrt{1}$	$\overline{s^2 + t^2}$	

Q3 Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ if $x - z = \tan^{-1}(yz)$.

Q4 The derivative of f(x, y, z) at a point *P* is greatest in the direction of $\mathbf{v} = \mathbf{i} + \mathbf{j} - \mathbf{k}$. In this direction, the value of the derivative is $2\sqrt{3}$.

(a) What is ∇f at P ?

(b) What is the derivative of f at P in the direction of $\mathbf{i} + \mathbf{j}$?

Q5 At what point on the paraboloid $y = x^2 + z^2$ is the tangent plane parallel to the plane x + 2y + 3z = 1?