KFUPM – Department of Mathematics and Statistics – Term 131 MATH 102 QUIZ5 # Code 1 (Duration = 15 minutes)

NAME:	ID:	Section:
Exercise 1 (5 points)		
Determine whether the series	$\sum_{n=1}^{\infty} \frac{\ln(n)}{n^2}$ is convergent or divergent.	

Exercise 2 (5points)

Determine whether the series $\sum_{n=1}^{\infty} \left(\frac{n}{2} \sin(\frac{1}{n}) \right)^n$ is convergent or divergent.

KFUPM – Department of Mathematics and Statistics – Term 131 MATH 102

QUIZ # 5 Code 2 (Duration = 15 minutes)

NAME:______ID:______Section:_____

Exercise 1 (5points)	
Determine whether the series	$\sum_{n=1}^{\infty} ne^{-n}$ is convergent or divergent.

Exercise 1 (5 points)

Determine whether the series $\sum_{n=1}^{\infty} \left(\frac{5}{2} - \frac{\ln(1+n)}{n} \right)^n$ is convergent or divergent.