KFUPM – Department of Mathematics and Statistics – Term 131

MATH 102 QUIZ # 1 Code 1 (Duration = 15 minutes)

Exercise 1 (5 points)

The limit $\lim_{n\to\infty} \sum_{i=1}^{n} \sin(3 + \frac{i\pi}{2n}) \frac{\pi}{2n}$ is equal to the definite integral:

$\int_0^{\frac{\pi}{2}} \sin x dx$	
$\int_0^{\pi/2} \sin(x+3) dx$	
$\int_0^\pi \sin(x+3)dx$	
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(x+3) dx$	
$e/\int_{-\pi}^{\pi}\sin(x+3)dx$	

Exercise 2 (5 points)

If $g(x) = \int_{2x}^{3x} \sqrt{t+1} dt$, then g'(1) is:

	JZX
a/ 0	
b/ 1	
c/ 2	
d/ -1	
e/ 3	

KFUPM – Department of Mathematics and Statistics – Term 131

MATH 102 QUIZ # 1 Code 2 (Duration = 15 minutes)

NAME:	_ID:	section:	
		_	

Exercise 1 (5 points)

The limit $\lim_{n\to\infty} \sum_{i=1}^{n} \sin(2 + \frac{i\pi}{n}) \frac{\pi}{n}$ is equal to the definite integral:

$a/\int_0^{\frac{\pi}{2}} \sin x dx$	
$\int_0^{\pi/2} \sin(x+2) dx$	
$c/\int_0^\pi \sin(x+2)dx$	
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(x+2) dx$	
$e/\int_{-\pi}^{\pi}\sin(x+2)dx$	

Exercise 2 (5 points)

If
$$g(x) = \int_{2x}^{\sqrt{x}} (t^2 + t) dt$$
, then $g'(1)$ is:

	• 2 X
a/ -4	
$b/\frac{11}{4}$	
c/ -11	
d/ 11	
$\frac{e}{-11}$	