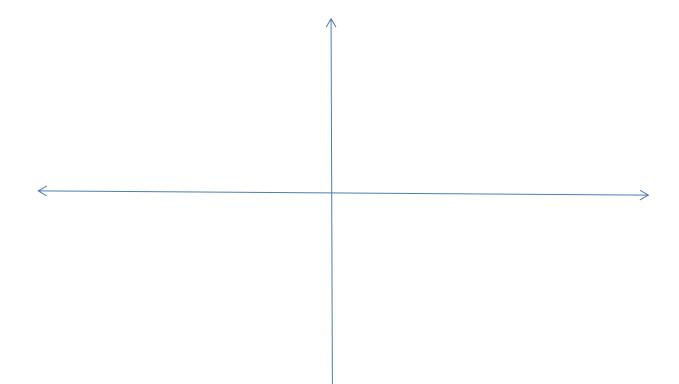
Code 001


Serial No:

1- Evaluate the limit if it exists

$$\lim_{x \to 1} \left(\frac{x^2 - |x - 1| - 1}{|x - 1|} \right)$$

2- Sketch the graph of a function f that satisfies all of the following conditions:

$$\lim_{x \to -6^-} f(x) = -\infty$$
; $\lim_{x \to -6^+} f(x) = \infty$; $\lim_{x \to -\infty} f(x) = -2$; $\lim_{x \to -2} f(x) = 1$; $f(x)$ is undefined at -2 ; $\lim_{x \to 1^-} f(x) = -1$; $\lim_{x \to 1^+} f(x) = 2$; $f(1) = 4$

3- Let
$$f(x) = \begin{cases} \frac{6a}{x+1} & \text{if } x > 1\\ 1 & \text{if } x = 1\\ a^2 & \text{if } x < 1 \end{cases}$$

Find the value(s) of α so that f(x) has a jump discontinuity.

4- Use the Intermediate Value Theorem to show that the equation $\cos x = \sqrt{x}$ has at least one real root in the interval $\left[0, \frac{\pi}{2}\right]$.