KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS Term 123

STAT 319 Statistics for Engineers and Scientists

Third Major Exam				Sunday July 21, 2013		
Please check/circle your instructor's name						
	□ Anabosi	□ Jabbar	□ Al-Sabah	□ Saleh	□ Alsawi	
Name: _			ID #: _		Section#	

⊙ Important Note:

Show all your work

- a) including formulas,
- b) intermediate steps, and
- c) Final answer.
- d) In testing problems, write down
 - i) The null and alternative hypotheses
 - ii) The test statistic
 - iii) The rejection region
 - iv) The decision, and
 - v) The conclusion

Question No	Full Marks	Marks Obtained
1	10	
2	10	
3	2	
4	13	
Total	35	

1)	anc	water samples were collected from a lake and analyzed for concentration of both lead aluminum particles. The lead concentration measurements had a mean of 9.9 nmol/l and a standard deviation of 8.4 nmol/l. Calculate a 95% confidence interval for the true mean lead concentration in water samples collected from the lake. (3 pts)
	b)	Do you need any assumptions to construct the interval in a)? If yes, what are they? If no, why? (1 pt)
	c)	The aluminum concentration measurements had a mean of 6.7 nmol/l and standard deviation of 10.8 nmol/l. Construct a 99% confidence interval for the difference between the true means between lead concentration and the aluminum concentration in water samples collected from the lake. (3 pts)
	d)	Based on the result in c) can you conclude that there is a difference between the lead and aluminum concentration in water samples. Justify your answer. (2 pts)
	e)	At what significance level are you making the conclusion in d)? (1 pt)

2)	Chewing gum packages are labeled as 6 ounces, but the company wants the packages to contain a mean of 6.17 ounces. A sample of 20 packages is selected periodically, and the packaging process is stopped if there is evidence that the mean amount packaged is less than from 6.17 ounces. Suppose that in a particular sample of 20 packages, the mean amount dispensed is 6.157 ounces, with a standard deviation of 0.042 ounces.		
	a) At the 10% significance level, is there evidence to stop the process?	(7 pts)	
	b) Determine the p-value and explain how it can be used?	(3 pts)	
3)	An estimate of the mean time until a machine requires service is desired. assumed that the standard deviation is 60 days, how large a sample is needed will be able to say with 90% confidence that the sample mean is off by at most	I so that one ost 10 days?	
		(2 pts)	

4)	is checked by experimenting with actual aircraft in which a kill or a no kill is simulated. The existing system has a kill probability of 80%				
	a) If in 300 trials, 250 kills occur, at the 0.04 level of significance, test the				
	new system is better than the existing one.	(7 pts)			
	b) What is the p-value of the test in a)?	(2 pt)			
		1			
	c) Construct a 90% C.I. for the probability of a kill with the new system an	(4 pts)			
		(τpis)			