King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 302 Final Exam The Third Semester of 2012-2013 (123)

Time Allowed: 180 Minutes

Name:	ID#:		
Instructor:	Sec #: Serial #:		

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question #	Marks	Maximum Marks
1		12
2		12
3		12
4		16
5		16
6		12
7		15
8		15
9		15
10		15
Total		140

Q:1(12 points) Let $A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 6 & 0 \\ -4 & 0 & 4 \end{bmatrix}$. Find all eigenvalues and eigenfunctions.

Q:2 (12 points) Use Green's theorem to evaluate the line integral

 $\oint_C (2x^2 \sin 2x - 3y^2) dx + (2x^2 + 3y^2 e^{y^3}) dy,$

where C is the boundary of the region bounded by $y = x^2$ and $y = x^3$ in the first quadrant.

Q:3(12 points) Find surface area of that portion of the sphere $x^2 + y^2 + z^2 = 9$ that is above the z = 0 plane and within the cylinder $x^2 + y^2 = 4$.

Q:4 (10+6 points) (A) Find real numbers a, b, c, and d such that

$$f(z) = x^{2} + axy + by^{2} + i(cx^{2} + dxy + y^{2})$$
 is analytic.

(B) Show that the function $f(z) = \frac{x + iy}{x^2 + y^2}$ is not analytic.

Q:5 (8+8 points) (A) Find all solutions of $\sinh z + 1 = 0$.

(B) Express $\operatorname{Ln}(1+\sqrt{3})^5$ as a+ib.

Q:6 (12 points) Evaluate the integral $\int_C Re(z) dz$ where C is the upper half of the ellipse $x^2 + 9y^2 = 36$ from z = 6i to z = -6i.

Q:7 (15 points) Evaluate the integral $\oint_C \frac{-3z+2}{z^2-8z+12} dz$ where C is the circle |z| = 9.

Q:8 (15 points) Evaluate the integral $\oint_C \frac{\sin z}{(z-\pi)^4} + \frac{\cos z}{(2z-\pi)^4} dz$ where C is the circle |z| = 3.

Q:9 (15 points) Expand $f(z) = \frac{1+z}{1-z}$ in a Taylor series centered at z = i.

Q:10 (15 points) Expand $f(z) = \frac{1}{(z-1)^2(z-3)}$ in a Laurent series valid for 0 < |z-1| < 2.