King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 302 Major Exam 2 The Third Semester of 2012-2013 (123)

Time Allowed: 120 Minutes

ID#:	
c #: Serial #:	
Э	

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		12
2		12
3		16
4		15
5		15
6		15
7		15
Total		100

Q:1 (12 points) Find equation of the tangent plane and normal line to the graph of $z = 2x^2 - 3y^2$

at (2, 1, 5).

Q:2 (12 points) Show that $\vec{F}(x, y) = (x^2 + y^2 + 1)^{-2}(x\mathbf{i} + y\mathbf{j})$ is conservative. Find a potential function $\phi(x, y)$ such that $\nabla \phi = \vec{F}$. Use $\phi(x, y)$ to evaluate $\int_C \vec{F} \cdot d\vec{r}$ along any path from (0, 0) to (1, 1).

Q:3 (16 points) Evaluate the line integral $\oint_C \frac{-y^3 dx + xy^2 dy}{(x^2 + y^2)^2}$, where C is an ellipse $4x^2 + y^2 = 4$.

Q:4 (15 points) Evaluate the surface integral $\iint_{S} (2x + 3y + z) dS$, where S is the portion of the surface $z^2 = x^2 + y^2$ between z = 3 and z = 5.

Q:5 (15 points) Use Stoke's theorem to evaluate $\oint_C \vec{F} \cdot d\vec{r}$ where C is the trace of the cylinder $x^2 + y^2 = 4$ in the plane x + y + z = 2.