King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 302 Major Exam 1 The Third Semester of 2012-2013 (123)

Time Allowed: 120 Minutes

ID#:	
c #: Serial #:	
Э	

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		14
2		12
3		16
4		12
5		15
6		16
7		15
Total		100

Q:1 (14 points) Find the solution of the initial value problem

 $\mathbf{r}''(t) = \sec^2 t\mathbf{i} + \cos t\mathbf{j} - \sin t\mathbf{k}, \text{ with } \mathbf{r}'(0) = \mathbf{i} + \mathbf{j} + \mathbf{k} \text{ and } \mathbf{r}(0) = -\mathbf{j} + 5\mathbf{k}.$

- (a) Find the directional derivative of f(x, y) at (3, 2) in the direction of a tangent vector to the graph of 3x² + 2y² = 11 at (1, 2).
- (b) Find the direction and value of maximum directional derivative of f(x, y) at (3, 2).

Q:3 (16 points) Show that the vectors $\mathbf{u}_1 = <1, 1, 1>$, $\mathbf{u}_2 = <2, 0, -1>$ and $\mathbf{u}_1 = <3, 1, 5>$ are linearly independent. Also write the vector $\mathbf{v} = <7, -1, 5>$ as a linear combination of \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 .

Q:5 (15 points) Let $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Find an orthogonal matrix P such that $P^{-1}AP = D$, where D is an orthogonal matrix.

Q:6 (8+8 points) (a) Let $S = \{(x, y, x) \in \mathbb{R}^3 | 2x + 3y + 4z = 0\}$ be a subset of 3 - D space. Show that S is a subspace of \mathbb{R}^3 . Write the dimension of S.

(b) Let $S = \{(x, y, x) \in \mathbb{R}^3 | 2x + 3y + 4z = 12\}$ be a subset of 3 - D space. Determine whether S is a subspace of \mathbb{R}^3 or not.

- Q:7 (15 points) Write Correct or NotCorrect. If not correct then write what is correct.
 - (A) Every symmetric matrix is diagonalizable but not orthogonally diagonalizable.

(B) Every matrix is diagonalizable.

(C) An $n \times n$ symmetric matrix may or maynot have n linearly independent eigenvectors.

(D) Rank of the coefficient matrix of a linear system is equal to the number of free variables in the solution of the system.

(E) For all matrices, the complex eigenvalues always occur in complex conjugate pairs.