King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 301 Major Exam 1 The Third Semester of 2012-2013 (123)

Time Allowed: 120 Minutes

Name:	ID#:	
Instructor:	Sec #: Serial #:	

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		10
2		12
3		10
4		12
5		12
6		14
7		15
8		15
Total		100

Q:1 (10 points) Find length of the curve traced by $\vec{r}(t) = e^{2t} \cos(3t) \mathbf{i} + e^{2t} \sin(3t) \mathbf{j} + e^{2t} \mathbf{k}$ on the interval $0 \le t \le 2\pi$. Also find a unit tangent vector to the curve at $t = \pi$.

- (a) Find the directional derivative of f(x, y) at (3, 2) in the direction of a tangent vector to the graph of x² + 2y² = 6 at (2, 1).
- (b) Find the direction and value of maximum directional derivative of f(x, y) at (3, 2).

Q:3 (10 points) Let $\vec{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $\vec{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ is a constant vector. Show that

(a)
$$\nabla \times [(\vec{r} \cdot \vec{r}) \vec{a}] = 2(\vec{r} \times \vec{a})$$

(b) $\nabla \cdot [(\vec{r} \cdot \vec{r}) \vec{a}] = 2(\vec{r} \cdot \vec{a})$

Q:4 (12 points) Find work done by the force $\vec{F} = (2xy - e^{3y})\mathbf{i} + (x^2 - 3xe^{3y})\mathbf{j}$ along the curve

 $y = x^4$ for $0 \le x \le 1$.

Q:5 (12 points) Use Green's theorem to evaluate the line integral

$$\oint_C (2x^2 - 2y^3) dx + (2x^3 + 3y^2) dy,$$

 $C = C_1 \bigcup C_2$, where C_1 is a positively oriented circle $x^2 + y^2 = 9$ and C_2 is a negatively oriented circle $x^2 + y^2 = 4$.

Q:6 (14 points) Evaluate the surface integral $\int \int_{S} (2xz + 3yz) \, dS$, where S is the portion of the plane 3x + 2y + 4z = 12 in the first octant. Use projection of S onto yz-plane.

Q:7 (15 points) Use Stokes' theorem to evaluate the integral $\iint_S curl(F) \cdot \hat{n} \, dS$, where $\vec{F} = \frac{xz}{4}\mathbf{i} + 4xy\mathbf{j} + 3xyz\mathbf{k}$ and S is the portion of the paraboloid $z = x^2 + 4y^2$ for $0 \le z \le 16$.

Q:8 (15 points) Use divergence theorem to evaluate $\iint_S (\vec{F}.\hat{n}) dS$ where $\vec{F} = 6xz\mathbf{i} + 5y^2\mathbf{j} - 3z^2\mathbf{k}$ and D the region bounded by z = y, z = 4 - y, $z = 2 - \frac{1}{2}x^2$, x = 0 and z = 0.