King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 301 Major Exam 2 The Third Semester of 2012-2013 (123)

Time Allowed: 120 Minutes

ID#:	
c #: Serial #:	
Э	

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		14
2		14
3		14
4		18
5		12
6		12
7		16
Total		100

Q:1 (7+7 points) Find the following Laplace transforms:

(a)
$$\mathcal{L}\{te^{-t}\sin^2 3t\},\$$

(b) $\mathcal{L}^{-1}\left\{\frac{e^{-2s}}{s^2+2s+3}\right\}.$

 ${\bf Q:2}$ (14 points) Solve the integro-differential equation:

$$f(t) = 2t - \int_{0}^{t} (e^{2\tau} - e^{-2\tau}) f(t-\tau) d\tau$$

Q:3 (14 points) Solve the initial value problem using Laplace transform $y'' - y' - 2y = \delta(t - \pi)$

with y(0) = 1, y'(0) = 1.

- (a) Sketch the graph of the function f.
- (b) Sketch the graph of the Fourier series of f on separate coordinate axes.
- (c) Find the Fourier series of f.

Q:5 (12 points) Let $f(x) = \begin{cases} x, & 0 < x < 2 \\ 0, & 2 \le x < 3 \end{cases}$.

Find the Fourier sine series of f.

- **Q:6** (6+6 points) Consider the differential equation $y'' 2y' = \lambda y$, $x \in (0, 1)$ with the boundary conditions y(0) = 0 and y(1) = 0.
- (a) Write the differential equation in self-adjoint form.
- (b) Is this a regular Sturm-Liouville problem? If yes, write the weight function and associated inner product (orthogonality condition).

Q:7 (16 points) Find the first two terms of the eigenfunction expansion of $f(x) = \sin(\pi x)$ in eigenfunctions of the Sturm-Liouville problem

 $y'' + \lambda y = 0, \ x \in (0,1)$ with y'(0) = 0, y'(1) = 0.