MATH 202 (Term 123)	Quiz 1	Code 01
	ID //	0
Name:	ID #:	Section #:

Q1) Determine a region in the xy-plane for which the differential equation $(1+y^3)y' = x^2$ would have a unique solution whose graph passes through a point (x_0, y_0) in the region. (2 points)

Q2) Solve
$$\frac{dy}{dx} = \frac{xy + 2y - x - 2}{xy - 3y + x - 3}$$
. (3.5 points)

Q3) Solve the initial value problem $y\frac{dx}{dy} - x = 2y^2$, y(1) = 5. (4.5 points)

MATH 202 (Term 123)	Quiz 1	Code 02
Name:	ID #:	Section $\#$:

Q1) Determine a region in the xy-plane for which the differential equation (y-x)y' = y + x would have a unique solution whose graph passes through a point (x_0, y_0) in the region. (2 points)

Q2) Solve the initial value problem $\frac{dy}{dx} = \frac{y^2 - 1}{x^2 - 1}$, y(2) = 2. (4 points)

Q3) Solve
$$(1+x)\frac{dy}{dx} - xy = x + x^2$$
. (4 points)