KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS MATH 102 (123) FINAL EXAM

Exercise 1: The integral

$$\int_{-2}^{2} (x^5 + 3)\sqrt{4 - x^2} dx$$

is equal to

- (a) 6π
 (b) 3π
 (c) π/2
 (d) 3 + 2π
- (e) $5 + 2\pi$

Exercise 2: If

$$F(x) = \int_{1}^{x^{2}} \frac{1}{2\sqrt{t}} \tan^{-1}\left(\sqrt{t}\right) dt \quad , \quad x > 0$$

then F(1) + F'(1) + F''(1) is equal to

- (a) $\frac{\pi + 2}{4}$
- (b) $\frac{\pi 2}{4}$
- (c) $\frac{2\pi 1}{2}$
- (d) $\frac{\pi + 1}{2}$
- (e) 0

Exercise 3: The integral

$$\int \frac{1}{x^2} \sqrt{2 - \frac{1}{x}} dx$$

is equal to

(a) $\frac{2}{3} \left[2 - \frac{1}{x}\right]^{3/2} + C$ (b) $3 \left[2 - \frac{1}{x}\right]^{1/3} + C$ (c) $2 \left[2 - \frac{1}{x}\right]^{1/2} + C$ (d) $\frac{1}{3} \left[2 - \frac{1}{x}\right]^{3/2} + C$ (e) $\left[2 - \frac{1}{x}\right]^{3/2} + C$

Exercise 4: The area of the region below the line y = 1 and between the curves $y = \tan x$ and x = 0 is equal to

(a)
$$\frac{1}{4}(\pi - 2 \ln 2)$$

(b) $\frac{1}{4}(\pi + \ln 2)$
(c) $\frac{\pi}{4} - 1$
(d) $\frac{\pi}{2} + \ln 2$
(e) $\frac{\pi}{4} - \ln 2$

Exercise 5: The volume of the solid generated by rotating the region bounded by the curves y = x and $y = \sqrt{x}$ about the line x = -1 is given by (a) $\int_0^1 \pi \left[(y+1)^2 - (y^2+1)^2 \right] dy$ (b) $\int_0^1 \pi \left[(y-1)^2 - (y^2+2)^2 \right] dy$ (c) $\int_0^1 \pi \left[y^2 - y^4 \right] dy$ (d) $\int_0^1 \pi \left[(y-1)^2 - (y^2-1)^2 \right] dy$ (e) $\int_0^1 \pi \left[y^4 - y^2 + 2y - 1 \right] dy$

Exercise 6: The region bounded by the curve $y = 2\sqrt{x}$, the *x*-axis, and the line x = 4 is rotated about the y-axis. The volume of the solid generated is equal to

- (a) $\frac{2^8}{5}\pi$ (b) $\frac{2^6}{3}\pi$
- (c) $\frac{2^8}{3}\pi$
- (d) $\frac{2^6}{5}\pi$
- (e) $\frac{2^6}{4}\pi$

Exercise 7: The sum of the series

$$\frac{(\ln 3)^2}{2!} + \frac{(\ln 3)^3}{3!} + \frac{(\ln 3)^4}{4!} + \cdots$$

is equal to (a) $2 - \ln 3$ (b) 3(c) $\ln 3$ (d) $1 + \ln 3$ (e) 2

Exercise 8: The length of the curve

$$y = \int_0^x \sqrt{\sec^4 t - 1} dt \ , \ 0 \le x \le \frac{\pi}{4}$$

is equal to (a) 1 (b) $\sqrt{2}$ (c) $3 - \sqrt{2}$ (d) 2 (e) $1 + \sqrt{3}$ **Exercise 9:** The area of the surface obtained by rotating the curve $y = \cosh x$, $0 \le x \le 1$ about the *y*-axis is given by (a) $\int_0^1 2\pi x \cosh x dx$ (b) $\int_0^1 2\pi x \sinh x dx$ (c) $\int_0^1 2\pi x \cosh x \sinh x dx$ (d) $\int_0^1 2\pi x \cosh x \sinh x dx$ (e) $\int_0^1 2\pi x \operatorname{sech} x dx$

Exercise 10: The integral

$$\int \frac{dx}{2\sqrt{x} + 2x}$$

is equal to

- (a) $\ln(1 + \sqrt{x}) + C$ (b) $\ln(\sqrt{x}) + C$ (c) $2\ln(1 + \sqrt{x}) + C$
- (d) $\frac{1}{2} \ln (1 + \sqrt{x}) + C$
- (e) $\ln(x + \sqrt{x}) + C$

Exercise 11: The integral

$$\int_0^1 e^t \cosh t dt$$

is equal to (a) $\frac{1}{4}(e^2 + 1)$ (b) $\frac{1}{2}(e^2 + 1)$ (c) $e^2 - 1$ (d) $\frac{1}{2}(e - 2)$ (e) $\frac{1}{3}(e + 2)$

Exercise 12: The integral

$$\int_0^{\frac{\pi}{2}} \mathrm{e}^{\cos x} \sin(2x) dx$$

is equal to (a) 2 (b) $-\frac{1}{2}$ (c) 0 (d) 3 (e) -4 **Exercise 13:** The integral

$$\int \frac{\sin^3 x}{\cos^4 x} dx$$

is equal to

(a) $\frac{1}{3} \sec^3 x - \sec x + C$ (b) $3 \sec x - \frac{1}{3} \sec^3 x + C$ (c) $\sec^3 x + \sec x + C$ (d) $\sec^2 x + \frac{1}{3} \sec^3 x + C$ (e) $-\sec^3 x + \frac{1}{3} \sec x + C$

Exercise 14: If x > 2, the integral

$$\int \frac{\sqrt{x^2 - 4}}{x} dx$$

is equal to

(a)
$$\sqrt{x^2 - 4} - 2 \sec^{-1}\left(\frac{x}{2}\right) + C$$

(b) $\frac{2\sqrt{x^2 - 4}}{x} - 2 \sec^{-1}\left(\frac{x}{2}\right) + C$
(c) $2\sqrt{x^2 - 4} + 2 \tan^{-1}\left(\frac{x}{2}\right) + C$
(d) $x - 2 \sec^{-1}\left(\frac{x}{2}\right) + C$
(e) $2x\sqrt{x^2 - 4} - 2 \sec^{-1}\left(\frac{x}{2}\right) + C$

Exercise 15: If

$$\frac{3x^2 + 2x + 1}{(x-1)(x^2 + 2x + 5)} = \frac{A}{x-1} + \frac{Bx+C}{x^2 + 2x + 5}$$

then A + B + C is equal to (a) $\frac{23}{4}$ (b) $\frac{12}{5}$ (c) $\frac{21}{4}$ (d) $\frac{17}{5}$ (e) 0

Exercise 16: The integral

$$\int \frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} dx$$

is equal to

- (a) $\frac{1}{2} \ln |x| + \frac{1}{10} \ln |2x 1| \frac{1}{10} \ln |x + 2| + C$ (b) $\ln |x| + \ln |2x 1| \ln |x + 2| + C$ (c) $\ln |x| + \ln |2x| + 2| + C$ (c) $\frac{1}{2} \ln |x| - \ln |x+2| + C$ (d) $\frac{1}{2} \ln |x| + \frac{1}{5} \ln |2x-1| + 3\ln |x+2| + C$ (e) $2 \ln |x| + 3\ln |2x-1| - 3\ln |x+2| + C$

Exercise 17: The integral

$$\int_2^\infty \frac{dx}{x(\ln x)^p}$$

converges for

(a) p > 1(b) p = 0(c) p = -1(d) p = 1(e) p < 1

Exercise 18: The sequence

$$\left\{ \left(1 - \frac{2}{5n}\right)^{5n} \right\}_{n \ge 1}$$

is

(a) convergent and its limit is e^{-2}

(b) convergent and its limit is e^{-5}

(c) convergent and its limit is $e^{-2/5}$

(d) convergent and its limit is e^3

(e) divergent

Exercise 19: The series

$$\sum_{n\geq 1} \frac{\sin(n\pi) + 2^n}{3^n}$$

is equal to

(a) 2

(b) 3

(c) 33 (d) $\frac{2}{33}$ (e) 6

Exercise 20: Which of the following proposition is True about the series

$$\sum_{n\geq 1} \frac{n}{n^2+1}$$

(a) Diverges by the integral test

(b) Converges by the integral test

(c) Converges by the n^{th} term test (d) Diverges by the n^{th} term test

(e) The integral test cannot be applied

Exercise 21: The series

$$\sum_{n\geq 1} \frac{4}{n(n+2)}$$

is equal to

(a) 3

(b) 4 (c) 5

(d) 7

(e) 1024

Exercise 22: The series

$$\sum_{n \ge 1} \left(\frac{3n}{4n+1}\right)^n$$

is

(a) Convergent by the root test

(b) Divergent by the root test

(c) A series for which the root test is inconclusive

(d) Divergent by the n^{th} -term test of Divergence

(e) Divergent by the limit comparison test

Exercise 23: The series

$$\sum_{n\geq 1}^n \frac{3^{n+2}}{\ln n}$$

is

(a) Divergent by the ratio test

(b) Convergent by the ratio test

(c) A series for which the ratio test is inconclusive

(d) Convergent by the n^{th} root test

(e) The ratio test cannot be applied

Exercise 24: Which of the following proposition is False about the series

$$\sum_{n \ge 1} (-1)^{n+1} \frac{n}{n^3 + 1}$$

(a) Diverges

(b) Converges absolutely

(c) Converges

(d) Converges by the alternating series test

(e) converges with the absolute convergence test and the alternating series test

Exercise 25: Which of the following proposition is True about the series

$$\sum_{n \ge 1} (-1)^{n+1} \frac{n!}{2^n}$$

(a) Diverges

(b) Converges absolutely

(c) Converges by the ratio test

(d) Converges by the integral test

(e) converges absolutely by the ratio test

Exercise 26: The interval of convergence of the power series

$$\sum_{n \ge 1} \left(1 + \frac{1}{n} \right)^n (x - 1)^n$$

is

(a)
$$(0, 2)$$

(b) $[0, 2]$
(c) $\left(\frac{e-1}{e}, \frac{e+1}{e}\right)$
(d) $[-1, 3)$
(e) $[0, 2)$

Exercise 27: The interval of convergence of the power series

$$\sum_{n\geq 1}^n \frac{5^n}{n} (x+1)^n$$

is

(a)
$$\left[-\frac{6}{5}, -\frac{4}{5}\right]$$

(b) $\left(-\frac{6}{5}, -\frac{4}{5}\right)$
(c) $\left[-\frac{6}{5}, -\frac{4}{5}\right]$
(d) $\left(-2, 1\right)$
(e) $\left[-2, 1\right)$

Exercise 28: The Taylor series of $e^{2x} \sin x$ is

(a) $x + 2x^2 + \frac{11}{6}x^3 + \dots$ (b) $x - 3x^2 + \frac{1}{6}x^3 + \dots$ (c) $x + 2x^2 + \frac{11}{5}x^3 + \dots$ (d) $x - 3x^2 + \frac{11}{6}x^3 + \dots$ (e) $x + 2x^2 - \frac{11}{5}x^3 + \dots$