King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 102
Major Exam I
Term 123
Tuesday, June 25, 2013
Duration: 120 minutes
CODE 000

Name:	
ID:	Sec:

Check that the exam has 20 questions

Calculators and mobile phones are NOT allowed during the examination.

Report your choices on the table below by putting an X in the appropriate cells

Ex#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
(a)																				
(b)																				
(c)																				
(d)																				
(e)																				

Total:....

1. Let P be a partition of the interval [-4,0], the value of the limit

$$\lim_{\|P\| \to 0} \sum_{k=1}^{n} \left(1 - 4\sqrt{16 - x_k^2} \right) \Delta x_k$$

is equal to

- (a) $4 16\pi$
- (b) $1 16\pi$
- (c) $4 4\pi$
- (d) $4 + 4\pi$
- (e) 4π

2. If f is integrable, $\int_{-2}^{5} f(x)dx = 7$ and $\int_{-2}^{3} f(x)dx = 5$, then $\int_{3}^{5} f(x)dx$ is equal to

- (a) 2
- (b) 3
- (c) 12
- (d) -2
- (e) -12

$$y = \int_{x^{1/3}}^{0} \sin(t^3) dt$$

then $\frac{dy}{dx}$ is equal to

- (a) $-\frac{1}{3}x^{-\frac{2}{3}}\sin(x)$
- (b) $\frac{1}{3}x^{-\frac{2}{3}}\sin(x)$
- (c) $x^{\frac{2}{3}}\sin(x)$
- (d) $\frac{3}{2}x^{-\frac{2}{3}}\sin(x)$
- (e) $\frac{3}{2}x^{\frac{2}{3}}\sin(x)$

4. The area of the region between the graph of $y=\cos(2x)$ and the x-axis between x=0 and $x=\frac{3\pi}{4}$ is

- (a) $\frac{3}{2}$
- (b) $\frac{1}{2}$
- (c) 1
- (d) $-\frac{1}{2}$
- (e) 2

5. The area of the region in the first quadrant enclosed by the curves $y=2x,\,y=\frac{1}{2}x^2$, y=2 is equal to

- (a) $\frac{5}{3}$
- (b) $\frac{2\sqrt{2}}{3}$
- (c) $5\sqrt{2}$
- (d) $\frac{2}{3}$
- (e) $\frac{11}{3}$

6. The area of the region bounded by the curves $y = 8x^2$ and $x = y^2$ is equal to

- (a) $\frac{1}{24}$
- (b) $\frac{3}{2\sqrt{2}}$
- (c) $\frac{3}{5}$
- (d) $\frac{1}{12}$
- (e) $\frac{5\sqrt{2}}{48}$

7. The volume of the solid generated by rotating the region between the x-axis and $y=x^2,\,1\leq x\leq 2$, about the x-axis is equal to

- (a) $\frac{31\pi}{5}$
- (b) $\frac{33\pi}{5}$
- (c) $\frac{32\pi}{5}$
- (d) $\frac{29\pi}{5}$
- $(e)\frac{30\pi}{5}$

8. The volume of the solid generated by rotation the region between $y=\frac{1}{x}$, $y=x^2$ and $x=\frac{1}{2}$ about the y-axis is equal to

(a)
$$\int_{1/4}^{1} \pi \left(y - \frac{1}{4} \right) dy + \int_{1}^{2} \pi \left(\frac{1}{y^{2}} - \frac{1}{4} \right) dy$$

(b)
$$\int_{1/4}^{1} \pi (y-1) dy + \int_{1}^{2} \pi \left(\frac{1}{y^{2}} - 1\right) dy$$

(c)
$$\int_{1/4}^{1} \pi \left(\frac{1}{y^2} - \frac{1}{4}\right) dy + \int_{1}^{2} \pi \left(y - \frac{1}{4}\right) dy$$

(d)
$$\int_{1/4}^{1} \pi \left(\frac{1}{y^2} - 1\right) dy + \int_{1}^{2} \pi (y - 1) dy$$

(e)
$$\int_{1/4}^{2} \pi \left(y - \frac{1}{y^2} \right) dy$$

- 9. The region in the first quadrant bounded by the curves $y^2 = x$ and $y = x^3$ is rotated about the y-axis, then the volume of the resulting solid is
 - (a) $\frac{2\pi}{5}$
 - (b) $\frac{3\pi}{5}$
 - (c) $\frac{\pi}{5}$
 - (d) $\frac{6\pi}{5}$
 - (e) $\frac{22\pi}{5}$

- 10. The length of the curve $y = 2x^{3/2} + \frac{3}{2}$ from x = 0 to x = 1 is equal to
- (a) $\frac{2}{27} \left(10\sqrt{10} 1 \right)$
- (b) $\frac{2}{3} \left(10\sqrt{10} 1 \right)$
- (c) $\frac{20\sqrt{10}}{27}$
- (d) $\frac{2}{27} \left(10\sqrt{10} + 1 \right)$
- (e) $\frac{1}{9} \left(10\sqrt{10} 1 \right)$

11. The area of the surface generated by revolving the curve $x = \frac{1}{2}\sqrt{2y-1}$, $1 \le y \le 2$, about the y-axis, is equal to

(a)
$$\int_{1}^{2} \pi \sqrt{2y - \frac{3}{4}} dy$$

(b)
$$\int_{1}^{2} \pi \sqrt{8y - 3} dy$$

(c)
$$\int_1^2 \pi \sqrt{2y - 1} dy$$

(d)
$$\int_{1}^{2} \pi \sqrt{4y - 3} dy$$

(e)
$$\int_{1}^{2} 2\pi \sqrt{2y-1} dy$$

12. The area of the surface generated by revolving the curve $y = \sqrt{x+1}$, $1 \le x \le 3$, about the x-axis, is equal to

(a)
$$\int_{1}^{3} 2\pi \sqrt{x + \frac{5}{4}} dx$$

(b)
$$\int_{1}^{3} 2\pi \sqrt{x + \frac{3}{4}} dx$$

(c)
$$\int_{1}^{3} 2\pi \sqrt{x+1} dx$$

(d)
$$\int_{1}^{3} 2\pi \sqrt{x + \frac{4}{5}} dx$$

(e)
$$\int_{1}^{3} 2\pi \sqrt{x + \frac{4}{3}} dx$$

13. The indefinite integral

$$\int e^{x^3 + 2\ln x} dx$$

is equal to

- (a) $\frac{1}{3}e^{x^3} + C$
- (b) $\frac{1}{2}e^{x^2} + C$
- (c) $e^{x^3} + \frac{x^3}{3} + C$
- (d) $e^{x^2} + x^2 + C$
- (e) $\frac{x^3}{3}e^{x^3} + C$

14. The indefinite integral

$$\int \frac{1}{\sqrt{x}} e^{\sqrt{x}} dx$$

is equal to

- (a) $2e^{\sqrt{x}} + C$
- (b) $e^{\sqrt{x}} + C$
- (c) $2e^{2\sqrt{x}} + C$
- (d) $e^{2\sqrt{x}} + C$
- (e) $\ln e^{\sqrt{x}} + C$

15. The definite integral

$$\int_{-1}^{1} \frac{x^2 + \sin x}{x^2 + 1} dx$$

is equal to

- (a) $2 \frac{\pi}{2}$
- (b) 0
- (c) $2 \frac{\pi}{4}$
- (d) $1 \frac{\pi}{4}$
- (e) $\frac{\pi}{2}$

- 16. The volume of the solid generated by revolving the region bounded by the curves $y=\frac{1}{x}$, y=0, x=1 and x=3 about the line x=3 is equal to
 - (a) $2\pi (3 \ln 3 2)$
 - (b) $\pi \ln 3$
 - (c) $\pi (3 \ln 3 2)$
 - (d) $2\pi (\ln 3 2)$
 - (e) $2\pi (3 \ln 3 1)$

$$f(x) = \int_{x^2}^{x^3} \mathbf{e}^{t^2} dt$$

then f(1) + f'(1) is equal to

- (a) **e**
- (b) π
- (c) 2**e**
- (d) 0
- (e) e 1

18. The length of the curve $y = (x+1)^{3/2}$ from $x = \frac{1}{3}$ to $x = \frac{4}{3}$ is equal to

- (a) $\frac{61}{27}$
- (b) $\frac{61}{9}$
- (c) $\frac{189}{27}$
- (d) $\frac{189}{9}$
- (e) $\frac{21}{27}$

19.
$$\int_0^{\pi/4} \frac{\sin(4x)}{1 + \sin^2(2x)} dx =$$

- (a) $\frac{\ln 2}{2}$
- (b) ln 2
- (c) π
- (d) $2 \ln 2$
- (e) $\ln \pi$

20.
$$\int \frac{\cos^{-1}(\frac{x}{2})}{\sqrt{4-x^2}} dx =$$

(a)
$$-\frac{1}{2} \left(\cos^{-1}\left(\frac{x}{2}\right)\right)^2 + C$$

(b)
$$\frac{1}{2} \left(\cos^{-1} \left(\frac{x}{2} \right) \right)^2 + C$$

(c)
$$\ln \left| \cos^{-1} \left(\frac{x}{2} \right) \right| + C$$

$$(d) -\frac{1}{2} \left(\sin^{-1} \left(\frac{x}{2} \right) \right)^2 + C$$

(e)
$$-(\cos^{-1}(\frac{x}{2}))^2 + C$$