King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

<u>Course:</u> Introduction to stochastic differential equations and applications to Mathematical Finance Math 590 @ Math 690

> Final Exam – 2012–2013 (122) Sunday, May 19, 2013

Allowed Time: 150 minutes

Instructor: Dr. Boubaker Smii

Name:

ID #: _____

Section #: _____

Serial Number: _____

Instructions:

- 1. Write clearly and legibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification !

Question #	Grade	Maximum Points
1		13
2		14
3		19
4		11
5		23
Total:		80

Exercise 1:

1- Let X be a random variable exponentially distributed with parameter λ . Prove that $\mathbb{E}(e^{itX}) = \frac{\lambda}{(\lambda - it)}, t \ge 0$.

2- Assume that X is Poisson distributed with parameter λ . Find the characteristic function of X.

Exercise 2:

Let B_t be a standard Brownian motion.

1- Write down the stochastic differential equation corresponding to the process $Y_t = B_t^4$ and deduce $\mathbb{E}(B_t^4)$.

2-Write down the stochastic differential equation corresponding to the process $Y_t = t B_t$.

3-Verify that $X_t = e^{B_t - \frac{t}{2}}$ satisfies the stochastic differential equation: $dX_t = X_t dB_t$.

Exercise 3:

Let $B_t \in \mathbb{R}, B_0 = 0$. Define $X_k(t) = \mathbb{E}(B_t^k), k = 0, 1, 2, ...; t \ge 0$. 1)- Prove that $X_k = \frac{k(k-1)}{2} \int_0^t X_{k-2}(s) \, ds, k \ge 2$.

2)- Deduce $\mathbb{E}(B_t^4)$ and $\mathbb{E}(B_t^6)$

3)- Show that $\mathbb{E}(B_t^{2k+1}) = 0$ and $\mathbb{E}(B_t^{2k}) = \frac{(2k)!t^k}{2^k k!}; \ k = 1, 2, \dots$

Exercise 4:

Assume that you exercise an option at a fixed price K and a maturity time T. The value V_t of your portfolio at time t is given by:

$$V_t = u(T - t, X_t), t \in [0, T],$$

for some smooth deterministic function u(t, x) and X_t a stochastic process satisfying:

$$X_t = X_0 + c \, \int_0^t \, X_s \, ds + \, \sigma \, \int_0^t \, X_s \, dB_s, \ c > 0, \, \sigma > 0.$$

1- Find the European call option.

2-Express V_t in terms of u_1 , u_2 and u_{22} .

Exercise 5:

A- The Black-Scholes-Merton model for growth with uncertain rate of return, is the value of $\S1$ after time t, invested in a saving account. It is described by the following stochastic differential equation:

$$dX_t = \mu X_t dt + \sigma X_t dB_t, \ \mu, \sigma > 0 \tag{a}$$

Prove that the solution of the SDE (a) is given by a Geometric Brownian motion.

B-Let S_t be the price of a stock at time t. Suppose that stock price is modelled as a geometric Brownian motion $S_t = S_0 e^{\mu t + \sigma B_t}$, where B_t is a standard Brownian motion.

1- Suppose that the parameter values are $\mu = 0.055$ and $\sigma = 0.07$.

Given that $S_5 = 100$, find the probability that S_{10} is greater than 150. (you may express the result as $\Phi(\alpha)$, where Φ is the standard Normal distribution function and α a real number.)

2- Now assume that μ and σ are fixed parameters and the initial value of the stock is $S_0 = 1$.

i)- Find the median of S_t and the expectation of S_t . ii)- Given that $\mu = -\frac{1}{2}\sigma^2$. State, with justifications, whether or not the stock would be a good long term investment in this case.