King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 590 Exam I– 2012–2013 (122) Thursday, April 25, 2013

Allowed Time: 120 minutes

Instructor: Dr. Boubaker Smii

Name:

ID #: _____

Section #: _____

Serial Number: _____

Instructions:

1. Write clearly and legibly. You may lose points for messy work.

2. Show all your work. No points for answers without justification !

Question $\#$	Grade	Maximum Points
1		13
2		07
3		16
4		12
5		12
Total:		60

Exercise 1:

Exercise 1: Consider the standard Brownian motion $\{B_t, t \ge 0\}$. a)- Show whether or not $V_t = \sqrt{t} B_t$ is a standard Brownian motion. b)- Find $\mathbb{E}(|B_t - B_s|^2)$. c)- Given that $\int_{\mathbb{R}} e^{\frac{-(x-i\lambda t)^2}{2t}} dx = \sqrt{2\pi}$, compute the characteristic function of B_t . d)- Deduce from c) $\mathbb{E}(B_t^4)$.

Exercise 2:

Consider the Brownian motion with drift coefficient μ and variance parameter σ , given by $Y_t = \mu t + \sigma B_t$, where B_t is a standard Brownian motion. Let $X_t = e^{Y_t}$, $t \ge 0$. For $0 \le u \le s < t$, and Y_s given, compute $E(X_t \mid X_u)$.

Exercise 3: Let X_t, Y_t be It \hat{o} processes in \mathbb{R} . 1)- Prove that:

$$X_t Y_t = X_0 Y_0 + \int_0^t Y_s \, dX_s + \int_0^t X_s \, dY_s + \int_0^t \, dX_s \, dY_s$$

2)- Let $F_t = \exp(-\alpha B_t + \frac{1}{2} \alpha^2 t)$. i)- Find dF_t .

ii)- Solve the stochastic differential equation: $dY_t = r dt + \alpha Y_t dB_t$. (Hint: Use Part 1)).

Exercise 4:

A vibrating string subject of a stochastic force is modeled by the following stochastic differential equation:

$$\begin{cases} dX_1(t) = X_2(t) dt + \alpha dB_1(t) \\ dX_2(t) = -X_1(t) dt + \beta dB_2(t) \end{cases}$$
(a)

where $(B_1(t), B_2(t))$ is a 2-dimensional Brownian motion and α , β are constants. Solve the stochastic differential equation (a).

Exercise 5:

The mean-reverting Ornstein-Uhlenbeck process is the solution X_t of the stochastic differential equation

$$dX_t = (m - X_t) dt + \sigma \, dB_t \tag{1}$$

where m, σ are real constants, $B_t \in \mathbb{R}$. a)- Solve the stochastic differential equation (1). b)- Find $\mathbb{E}(X_t)$ and $Var(X_t)$.