King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

Abstract Algebra (Math 551), Semester 122 Final Exam

Jawad Y. Abuhlail

Throughout, and unless otherwise explicitly mentioned, R is an associative ring with $1_R \neq 0_R$, $_R$ **Mod** (resp. **Mod**_R) is the category of left (resp. right) R-modules and **Ab** is the category of Abelian groups.

Part I. (60 points) Solve three of the following four questions:

- **Q1.** A left *R*-module *M* is semisimple iff M = Soc(M), where
 - $Soc(M) = \sum_{S \in \mathcal{S}(M)} S \text{ and } S(M) = \{S \mid S \leq_R M \text{ is a simple } R \text{-submodule}\}.$
- 1. Show that $_{R}M$ is semisimple if and only if every *R*-submodule of *M* is a direct summand.
- 2. Show that

$$\operatorname{Soc}(M) = \bigcap_{L \in \mathcal{E}(M)} L$$
, where $\mathcal{E}(M) = \{L \mid L \leq_R M \text{ is an essential } R \text{-submodule}\}.$

- 3. Compute $\operatorname{Soc}(\mathbb{Z}_{600})$.
- **Q2.** The Jacobson radical of the ring R is defined as

 $\mathcal{J}(R) := \bigcap_{\mathfrak{m} \in \operatorname{Max}(_RR)} \mathfrak{m}, \text{ where } \operatorname{Max}(_RR) \text{ is the set of maximal left ideals of } R.$

1. Show that

$$J(R) = \{r \in R \mid 1 - ar \text{ has a left inverse for all } a \in R\};\$$
$$= \{r \in R \mid rS = 0 \text{ for some simple } R \text{-module } S\}.$$

- 2. Show that if R is left Artinian, then R/J(R) is semisimple.
- 3. Compute $J(\mathbb{Z}/12\mathbb{Z})$ and $J(U_n(\mathbb{F}))$, where $U_n(\mathbb{F})$ is the ring of upper triangular $n \times n$ matrices with entries in the field \mathbb{F} .

Q3. A left *R*-module *F* is *flat* iff the functor $-\otimes_R F : \mathbf{Mod}_R \longrightarrow \mathbf{Ab}$ is exact.

- 1. Show that $_RF$ is flat if and only if the canonical map $\mu_I : I \otimes_R F \longrightarrow IF$ is injective for every finitely generated right ideal I of R.
- 2. Suppose that R has no non-zero zero-divisors and assume that every finitely generated right ideal of R is principal. Show that $_{R}F$ is flat if and only if $_{R}F$ is torsion free.
- 3. Show that if a left *R*-module *F* is flat, then $\operatorname{Hom}_{\mathbb{Z}}(F, \mathbb{Q}/\mathbb{Z})$ is an injective right *R*-module.

Q4. A left *R*-module *P* is *projective* if and only if $\operatorname{Hom}_R(P, -) : {}_R\mathbf{Mod} \longrightarrow \mathbf{Ab}$ is exact.

- 1. Show that $_{R}P$ is projective if and only if $_{R}P$ has a dual basis, *i.e.* there exists a subset $\{(p_{\lambda}, f_{\lambda})\} \subseteq P \times P^{*}$ such that every $p \in P$ can be written as $p = \sum f_{\lambda}(p)p_{\lambda}$ with $f_{\lambda}(p) \neq 0$ for only a finite number of $\lambda \in \Lambda$.
- 2. Show that the ring R is semisimple iff every left R-module is projective.
- 3. Give an example of a projective module P over a commutative ring such that P^* is not projective.

Part II. (20 points) Consider the Prüfer group

$$\mathbb{Z}_{p^{\infty}} = \sum_{k \in \mathbb{N}} \mathbb{Z}(\frac{1}{p^k} + \mathbb{Z}) \subseteq \mathbb{Q}/\mathbb{Z}$$

where p is a prime positive integer.

- 1. Find all \mathbb{Z} -submodules of $\mathbb{Z}_{p^{\infty}}$ and show that they form a chain.
- 2. Show that $\mathbb{Z}_{p^{\infty}}$ contains a unique simple \mathbb{Z} -module.
- 3. Show that $\mathbb{Z}_{p^{\infty}}$ is Artinian but not Noetherian.
- 4. Show that $\mathbb{Z}_{p^{\infty}}$ is an injective \mathbb{Z} -module.
- 5. Show that there is an essential embedding $\mathbb{Z}_p \hookrightarrow \mathbb{Z}_{p^{\infty}}$.

Part III. (20 points) State which of the following statements are true and which are

1. Every simple ring is semisimple.

false.

- 2. For every ideal of R with $I \subseteq J(R)$, we have J(R/I) = J(R)/I.
- 3. Every ideal of a commutative ring is an intersection of finitely many irreducible ideals of R.
- 4. \mathbb{Q} has a maximal \mathbb{Z} -submodule.
- 5. $\mathbb{Z}[\sqrt{-5}]$ is a Noetherian ring.
- 6. If R is a non-unital Noetherian ring, then R[x] is Noetherian.
- 7. Every Dedekind UFD is a PID.
- 8. \mathbb{Q}/\mathbb{Z} is an injective cogenerator in **Ab**.
- 9. Every commutative primitive ring is a field.
- 10. Every left primitive ring is right primitive.

GOOD LUCK