King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

Abstract Algebra (Math 551), Semester 122 Mid Term Exam

Jawad Y. Abuhlail

Throughout, and unless otherwise explicitly mentioned, R is an associative ring with $1_R \neq 0_R$ and $_R$ **Mod** (resp. **Mod**_R) is the category of left (resp. right) R-modules.

Part I. (60 points) Solve three of the following four questions:

Q1. A left *R*-module *P* is *projective* iff $\operatorname{Hom}_R(P, -) : {}_R\mathbf{Mod} \longrightarrow {}_{\mathbb{Z}}\mathbf{Mod}$ is exact.

1. Show that $_{R}P$ is projective if and only if P is a direct summand of a free left R-module.

- 2. Show that every direct sum of projective left *R*-modules is projective.
- 3. Give an example of a projective left R-module which is not free. Justify your claims.

Q2. A left *R*-module *E* is *injective* iff $\operatorname{Hom}_R(-, E) : {}_R\mathbf{Mod} \longrightarrow {}_{\mathbb{Z}}\mathbf{Mod}$ is exact.

- 1. Show that $_RE$ is injective if and only if the canonical map $\operatorname{Hom}_R(-, E) : \operatorname{Hom}_R(R, E) \longrightarrow \operatorname{Hom}_R(I, E)$ is surjective for every ideal I of R;
- 2. If R is a Noetherian commutative ring and $\{E_{\lambda}\}_{\Lambda}$ is a (possibly infinite) class of injective *R*-modules, then $\bigoplus_{\Lambda} E_{\lambda}$ is injective.
- 3. Give an example of an injective *R*-module *E* with a submodule $M \leq E$ which is not injective. Justify your claims.

Q3. Let $\{M_{\lambda}\}_{\Lambda}$ be a class of left *R*-modules and *N* a left *R*-module.

1. Show that we have a canonical isomorphism of Abelian groups

$$\operatorname{Hom}_R(N, \prod_{\Lambda} M_{\lambda}) \simeq \prod_{\Lambda} \operatorname{Hom}_R(N, M_{\lambda}).$$

2. Show that we have a canonical isomorphism of Abelian groups

$$\operatorname{Hom}_{R}(\bigoplus_{\Lambda} M_{\lambda}, N) \simeq \prod_{\Lambda} \operatorname{Hom}_{R}(M_{\lambda}, N).$$

3. Give an example in which

$$\operatorname{Hom}_{R}(\bigoplus_{\Lambda} M_{\lambda}, N) \cong \bigoplus_{\Lambda} \operatorname{Hom}_{R}(M_{\lambda}, N).$$

Q4. Consider the commutative diagram of R-modules

- 1. Show that if both inner squares are pullbacks, then the outer rectangle is a pullback.
- 2. Show that if the right square and the outer rectangle are pullbacks, then the left square is a pullback.
- 3. Give an example in which the left square and the outer rectangle are pullbacks but the right square is not a pullback.

Part II. (20 points) Let M be an R-module. An R-submodule $L \leq_M R$ is said to be essential (large) in M iff for every non-zero R-submodule $0 \neq K \leq_R M$, we have $K \cap L \neq 0$.

Q1. Let $f: L \longrightarrow M$ be a monomorphism of *R*-modules. Show that the following are equivalent:

- (a) $f(L) \leq_R M$ is an essential *R*-submodule.
- (b) For every R-linear map $g: M \longrightarrow N$, the following holds

 $g \circ f$ is a monomorphism $\Rightarrow g$ is a monomorphism.

(c) For every epimorphism $g: M \longrightarrow N$, the following holds

 $g \circ f$ is a monomorphism $\Rightarrow g$ is an isomorphism.

Q2. Let $K \xrightarrow{h} L \xrightarrow{f} M$ be two monomorphisms of *R*-modules. Show that $h(K) \subseteq L$ and $f(L) \subseteq M$ are essential if and only if $(f \circ h)(K) \subseteq M$ is essential.

Part III. (20 points) State which of the following statements is true and which are false.

- 1. If $\varphi: R \longrightarrow S$ is a morphism of rings and $P \in \operatorname{Spec}(S)$, then $\varphi^{-1}(P) \in \operatorname{Spec}(R)$.
- 2. If K is a field, then K[x, y] is a PID.
- 3. Every injective left *R*-module is divisible.
- 4. Every non-zero left *R*-module contains a maximal *R*-submodule.
- 5. \mathbb{Q} is a free Abelian group.
- 6. For all left R-module L, M and N we have

 $L \cap (M \oplus N) \simeq (L \cap M) \oplus (L \cap N).$

- 7. Every Abelian group is a subgroup of a divisible Abelian group.
- 8. If M is a free left R-module and β is a basis for ${}_{R}M$ with n elements, then we have an isomorphism of rings $\operatorname{End}_{R}(M) \simeq \mathbb{M}_{n}(R)$.
- 9. All bases of a finitely generated free left R-module have the same number of elements.
- 10. The direct product of injective left R-modules is injective.

GOOD LUCK