Name

1. [20pts] (a) Let T be the linear operator on \mathbb{R}^2 given by T(x, y) = (2x + y, 2y) and let W_1 be the subspace of \mathbb{R}^2 spanned by the vector $e_1 = (1, 0)$. Prove that W_1 is T-invariant and that there is no T-invariant subspace W_2 of \mathbb{R}^2 such that $\mathbb{R}^2 = W_1 \oplus W_2$

(b) Let T be a linear operator on a finite-dimensional vector space V and let $\alpha \in V$. Prove that if W is a T-invariant subspace of V that contains α then $Z(\alpha, T) \subseteq W$. Is it true that $Z(\alpha, T)$ is equal to the intersection of all T-invariant subspaces of V that contain α ? Justify

2. [24pts] (a) Let A be a matrix over \mathbb{R} such that $A^3 = A$. Is A diagonalizable? Justify.

(b) Let B be a 6×6 matrix with characteristic polynomial $f = (x^2 + 9) (x - 1)^4$ and minimal polynomial $p = (x^2 + 9) (x - 1)^2$.

(i) Find all possible rational forms of B over \mathbb{R}

(ii) Find all possible Jordan forms (up to order of Jordan blocks) of B over \mathbb{C}

(c) Let $C = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix}$. Find a matrix P such that $P^{-1}CP$ is in Jordan form.

- **3.** [20pts] (a) Let *E* be a projection and *T* be a linear operator on a vector space *V*.
- (i) Show that if E + T = I then T is a projection and ker $E = \operatorname{Im} T$
- (ii) Show that if dim $V \geq 3$, then V cannot contain a cyclic vector for E
- (b) Let L be a linear operator on \mathbb{R}^3 whose matrix representation in the standard basis is $\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

Prove that L has no cyclic vector.