King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics MATH 536 [Functional Analysis II] Semester (122)

Exam II: April 22, 2013 Time allowed: 2hrs:

(Q1) (a)Let P be an orthogonal projection on an inner product space X. Use an appropriate result to show that for each $z \in X$, $||z||^2 = ||x||^2 + ||y||^2$ where $x \in R(P)$ and $y \in N(P)$. Also check whether or not $R(P) = [N(P)]^{\perp}$.

(b)Let H be a Hilbert space and $P: H \to H$ be linear and bounded. The operator P is called projection on H if there is a closed subspace Y of H such that Y is the range of P and Y^{\perp} is the null space of P and P|Y = I (identity operator on Y.) If P is self-adjoint and idempotent, then prove that P is a projection on H.

(Q2) (a) Let P_1 and P_2 be projection on a Hilbert space H. Show that the sum $P = P_1 + P_2$ is a projection on H if $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$ are orthogonal.

(b) Let K be a closed and convex set in a Hilbert space $(H, \langle \cdot \rangle)$. If $z \in K$ is the projection of any $x \in H$, then show that $\langle x - z, y - z \rangle \leq 0$ for all $y \in K$.

(Q3) (a) Let X and Y be normed spaces. Show that a compact linear operator $T: X \to Y$ is continuous. If X is infinite dimensional, then check whether or not the identity operator on X is compact.

(b) Let T be a compact linear operator from a normed space X into a normed space Y. If a sequence $\{x_n\}$ in X weakly converges to x, then show that $\{Tx_n\}$ converges strongly in Y and has the limit y = Tx.

(Q4) (a) Let X and Y be normed spaces and $T: X \to Y$ be linear and compact. Then prove that R(T), the range of T, is separable.

(b)Let X be a Banach space and $T \in B(X)$. Define $\rho(T)$, resolvent set of T. If $\lambda \in \rho(T)$, then show that $(T - \lambda I)^{-1} \in B(X)$.

(c) Find eigenvalues and eigen vectors of the projection operator $P: H \to Y$ where Y is a closed subspace of a Hilbert space H.