King Fahd Univ. of Petroleum and Minerals Faculty of Sciences Department of Mathematics and Statistics

MAJOR No. 1 MATH. 531-122

Name:

ID:

<u>Prob. 1</u>

Let E be a non-empty set and $\mathcal{C} \subset \mathcal{P}(E)$ a non-empty collection. Prove that there exists a smallest σ -algebra on E containing \mathcal{C} .

<u>Prob. 2</u>

Let $f: E \to F$ be an application and $\mathcal{C} \subset \mathcal{P}(F)$. Prove that $\sigma_E(f^{-1}(\mathcal{C})) = f^{-1}(\sigma_F(\mathcal{C}))$.

<u>Prob. 3</u>

Let (E, Σ, μ) be a measure space, $A \in \Sigma$ and $B \subset E$ such that $A\Delta B \in \Sigma$ and $\mu(A\Delta B) = 0$. prove that $B \in \Sigma$ and $\mu(A \cap C) = \mu(B \cap C)$ for all $C \in \Sigma$. **<u>Prob.</u>** 4 Let μ^* be an outer measure on E and $A \subset E$. Prove that the following are equivalent

(i) A is μ^* -measurable

(ii) For every $\varepsilon > 0$ there exist A_1 and A_2 , μ^* -measurable, $A_1 \subset A \subset A_2$ such that $\mu^*(A_2 \setminus A_1) < \varepsilon$

(iii) For every $P \subset A$ and $Q \subset A^c$ we have $\mu^*(P \cup Q) = \mu^*(P) + \mu^*(Q)$.

<u>Prob. 5</u>

Let (E, Σ, μ) be a finite measure space, μ^* the outer measure generated by μ and $A \subset E$. Prove that A is μ^* -measurable if and only if $\mu^*(E) = \mu^*(A) + \mu^*(A^c)$.

<u>Prob. 6</u>

Let $A \in \mathcal{L}$ be such that $0 < m(A) < \infty$. We define the application $f: \mathbf{R}^+ \to \mathbf{R}^+$ by $f(x) := m(A \cap (-x, x))$. Prove that

(i) f is continuous and $f(\mathbf{R}^+)$ is equal to [0, m(A)] or [0, m(A))

(ii) For all c > 0 there exist $\{A_n\}_{n \ge 1} \subset \mathcal{L}$, $A_n \subset A$, n = 1, 2... such that $\sum_{n \ge 1} m(A_n) = cm(A)$.

<u>Prob. 7</u>

Let Let $\mu^* : \mathcal{P}(E) \to \overline{\mathbf{R}}^+$ be an outer measure. (a) Prove that $|\mu^*(A) - \mu^*(B)| \le \mu^*(A\Delta B)$ for all $A, B \subset E$, such that $\mu^*(A) < \infty$ or $\mu^*(B) < \infty$. (b) Let $A, B \subset E$ be such that B is μ^* -measurable, $B \subset A$ and $\mu^*(A) =$

 $\mu^*(B) < \infty$. Prove that A is μ^* -measurable.